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Reorientational relaxation of a linear probe molecule in a simple glassy liquid

W. Götze, A. P. Singh, and Th. Voigtmann
Physik-Department, Technische Universita¨t München, 85747 Garching, Germany

~Received 29 December 1999!

Within the mode-coupling theory~MCT! for the evolution of structural relaxation in glass-forming liquids,
correlation functions and susceptibility spectra are calculated characterizing the rotational dynamics of a
top-down symmetric dumbbell molecule, consisting of two fused hard spheres immersed in a hard-sphere
system. It is found that for sufficiently large dumbbell elongations, the dynamics of the probe molecule follows
the same universal glass-transition scenario as known from the MCT results of simple liquids. Thea-relaxation
process of the angular-indexj 51 response is stronger, slower, and less stretched than the one forj 52, in
qualitative agreement with results found by dielectric-loss and depolarized-light-scattering spectroscopy for
some supercooled liquids. For sufficiently small elongations, the reorientational relaxation occurs via large-
angle flips, and the standard scenario for the glass-transition dynamics is modified for odd-j responses due to
precursor phenomena of a nearby type-A MCT transition. In this case, a major part of the relaxation outside the
transient regime is described qualitatively by theb-relaxation scaling laws, while thea-relaxation scaling law
is strongly disturbed.

PACS number~s!: 64.70.Pf, 61.20.Lc, 61.25.Em
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I. INTRODUCTION

During the past ten years, the evolution of structural
laxation in glass-forming liquids has been intensively stud
using neutron-scattering spectroscopy, various lig
scattering techniques, dielectric-loss spectroscopy,
molecular-dynamics simulation. Results of this work ha
also been used to test the mode-coupling theory~MCT!,
which interprets the structural relaxation as precursor of
glass transition. Originally, the MCT was proposed as
approximation approach for the cage effect in liquids@1,2#.
In its simplest version, the MCT equations of motion d
scribe an ideal liquid-to-glass transition, i.e., a bifurcati
from ergodic to nonergodic dynamics, if control paramet
like temperatureT or packing fractionw cross critical values
Tc or wc , respectively. This bifurcation is connected with t
evolution of a two-step relaxation scenario entirely det
mined by the regularly changing equilibrium structure. Tw
divergent time scales appear, closely connected to
power-law decay processes. A detailed description of th
results can be found in Ref.@3# and references therein. Com
parisons of the theoretical results for simple model syste
with experiments done on colloids@4,5#, and with computer-
simulation studies@6,7# demonstrate the validity of the mi
croscopic MCT approach. For the solutions of the MC
equations, a variety of results has been derived
asymptotic expansions, using as a small parameter the
tance from the critical point,e5(w2wc)/wc , or e5(Tc
2T)/Tc , respectively. The leading-order results of this e
pansion establish universality features of the MCT dynam
Assessments of the theory have been reached by comp
spectra in the GHz regime or relaxation curves within
picosecond window with the universal results. The outco
of this work, which is reviewed in Ref.@8#, leads to the
conclusion that MCT properly describes some essential
tures of structural relaxation even for some complicated m
lecular liquids.

The MCT for simple systems has been extended rece
PRE 611063-651X/2000/61~6!/6934~16!/$15.00
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to liquids of nonspherical molecules@9–11#. But so far, only
the bifurcation equation for the so-called nonergodicity p
rameters resulting within the new theory could be solv
Comparing these results with the findings of molecul
dynamics simulations for a liquid of linear molecules@12,13#
and for water@11# indicates that the MCT for molecular liq
uids is promising. It was also predicted that there can be
states of nonergodic motion for nonspherical molecul
These states are connected by a type-A transition if the m
ecules exhibit a top-down symmetry@9,10,14#. Such transi-
tions are generic possibilities in MCT, provided there
some symmetry in the problem rendering certain mo
coupling coefficients zero@15#. At a type-A transition, the
nonergodicity parameters change continuously, wherea
the conventional MCT transition, referred to in this conte
as a type-B transition, a discontinuity occurs@16#.

In this paper, correlation functions and susceptibil
spectra shall be discussed, which deal with the glassy
namics of the orientational degrees of freedom of nonsph
cal molecules. The results are obtained as solutions of
equations of motion derived previously@10# for the dynam-
ics of a linear probe molecule immersed in a simple liquid
top-down symmetric dumbbell of two fused hard sphe
will be considered as the molecule, and as the solute, a h
sphere system is chosen. This model deals with the simp
problem concerning glassy rotational dynamics, namely,
influence of the cages formed by the neighbors of the m
ecule on the molecule’s reorientational motion as it is cau
by steric hindrance. The dynamics will be exemplified f
two cases: a molecule with a large elongation and a mole
with a small elongation.

It will be shown that large elongations lead to strong co
pling of the rotational degrees of freedom to the density fl
tuations of the solute, such that the glassy dynamics of
latter enforces the validity of all the universal MCT laws f
the solvent. Moreover, the corrections to the leading-ord
asymptotic laws show the same qualitative trends as stu
for simple liquids@17,18#. A motivation of the present study
6934 ©2000 The American Physical Society
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PRE 61 6935REORIENTATIONAL RELAXATION OF A LINEAR . . .
is the explanation of three general properties of thea relax-
ation in molecular liquids, which are exhibited in Fig. 1.
this figure, experimental susceptibility spectra for the van
Waals liquid propylene carbonate~PC! are reproduced for
four temperatures. One set of data deals with the respons
angular-momentum indexj 51; it was obtained by dielectric
loss spectroscopy@19#. The other set was measured b
depolarized-light-scattering spectroscopy@20# and deals with
the (j 52) reorientational dynamics. The data show forT
5293 K and T5295 K a-relaxation peaks at 4 GHz (j
51) and 10 GHz (j 52), respectively. These temperatur
exceed the melting temperatureTm5218 K of PC by more
than 70 K. LoweringT to 200 K, thea peaks of the spectra
are shifted down by about two orders of magnitude. T
shape of thea peak is temperature independent, and the ra
of the a-process-time scales, characterizing t
a-peak-maximum positions for the two values ofj, is alsoT
independent. These are two features that MCT predicts t
universal. The first nonuniversal feature to be understood
that thea-peak intensity, taken relative to that of the band
microscopic excitations at around 1 THz, is larger for t
( j 51) response than for the (j 52) case: the former exceed
the latter by about a factor of 2.7. Second, the (j 51) re-
sponse is slower than the response forj 52: the ratio of the
a-peak positions is about 2.5. Third, thea peak of the (j

FIG. 1. Susceptibility spectrax9 of propylene carbonate~PC,
symbols! and solutions obtained for a symmetric hard-sphere du
bell with elongationz50.80 immersed in a hard-sphere solve
~full lines, see text for details!. The symbols represent dielectric
loss spectra measured by Schneideret al. @19# ~upper panel! and
depolarized-light-scattering spectra of Duet al. @20# ~lower panel!
for temperatures as indicated. The full lines are calculated for
distance parametere5(w2wc)/wc52102x with x51, 1.33, 1.67,
and 2 for angular momentum indexj 51 and 2, respectively. Com
puted frequencies have been rescaled by a factor of 10 to mee
experimental GHz scale. The calculated susceptibilities have b
divided by 2.8 for thej 51 case in order to normalize the spectra
v/2p52 GHz. The inset exhibits packing fractionw vs tempera-
tureT for which the spectra are fitted. Here, the critical value of
hard-sphere system,wc50.516, corresponding to the critical tem
perature of PC,Tc'180 K, was added. The dashed line demo
strates the extrapolation from the foundw-T mapping toTc .
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51) response is less stretched than the peak forj 52, i.e., the
half-width of the (j 51) peak is smaller than that of the (j
52) peak. If one describes these peaks by the spectra o
Kohlrausch law,F(t)}e2(t/t)b

, the stretching exponentb
for j 51, b j 51'0.9 @19# is larger than the one forj 52,
b j 52'0.8 @20#. The same threea-peak features are noticed
if one compares the depolarized-light-scattering spectra
glycerol @21# with the corresponding dielectric-loss spect
@22#. A fourth general feature to be explained is the lar
ratio of the a-relaxation-time scale found by depolarize
light-scattering spectroscopy and the one found for the l
gitudinal elastic modulus by Brillouin-scattering spectro
copy. For Salol, a ratio of about 10 was reported@23#,
while for PC, a factor of about 5 was found@20#.

The small elongation of concern in this paper is chosen
that it exceeds the critical value for the above-mention
type-A transition by about 10%. The theory for the corre
tions to the leading-order asymptotic laws@17,18# implies
that these diverge at a type-A transition. Therefore, the ra
of validity of the universality features of the standard MC
bifurcation shrinks upon approaching the type-A transitio
It will be shown that in our example the standard results
not exhibited any more for reasonable choices of the dista
parametere. In particular, it is impossible to identify a two
step scenario for the odd-l correlators, nor isa-relaxation
scaling observed.

The paper is organized as follows. In Sec. II, the mode
defined, and the MCT equations are noted. After an overv
of the general scenario for the evolution of the glassy rel
ation of the reorientational correlators~Sec. III A!, the differ-
ences between the relaxation patterns for the (j 51) and (j
52) response are described for strong~Sec. III B! and weak
~Sec. III C! steric hindrance. In Sec. III D it is demonstrate
how theb relaxation is described by the first scaling law
and in Sec. III E it is discussed how thea-relaxation scaling-
law description emerges. The concluding Sec. IV summ
rizes the results.

II. THE MODEL SYSTEM

A. The solvent

A system ofN spherical particles shall be considered
the solvent. The basic variables describing the structure
the density fluctuations for the wave vectorqW : %qW

5(k exp(iqW•rW k)/AN. Here rW k,k51,2, . . . ,N, labels the
centers of the particles. The structure factorSq5^u%qW u2& pro-
vides the simplest information on the equilibrium distrib
tion of the particles; here,̂ & denotes canonical averaging
Because of rotational symmetry,Sq depends on the wave
vector modulusq5uqW u only. The structure factor can be ex
pressed through the direct correlation functioncq via the
Ornstein-Zernicke equationSq51/(12rcq), where r de-
notes the particle density@24#. The simplest quantities, char
acterizing the structural dynamics in a statistical manner,
the normalized autocorrelation functions for the density flu
tuations, called the density correlatorsFq(t)
5^%qW(t)* %qW&/Sq . The evolution with increasing timet is
given by the canonical equations of motion. We will al
need Fourier-Laplace transforms for complex frequencyz,
Im z>0, Fq(z), using the convention: F(z)
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6936 PRE 61W. GÖTZE, A. P. SINGH, AND TH. VOIGTMANN
5i*0
` exp(izt)F(t)dt. For real frequencyv, one gets withz

5v1 i0: F(z)5F8(v)1 iF 9(v). The imaginary part
F9(v) is called the fluctuation spectrum, andx9(v)
5vF9(v) is the susceptibility spectrum@24#.

The basic version of MCT consists of two equations@2#.
The first one is exact and derived within the Zwanzig-M
formalism:

] t
2Fq~ t !1Vq

2Fq~ t !1Vq
2E

0

t

mq~ t2t8! ] t8Fq~ t8!dt850.

~1a!

Here, Vq5vq/ASq, with v denoting the thermal velocity
The relaxation kernelmq(t) is a fluctuating-force correlator
The equation has to be solved with the initial conditi
Fq(t)512(Vqt)2/21O(t3) @24#. Equation~1a! is equiva-
lent to the double fraction

Fq~z!5
21

z2
Vq

2

z1Vq
2 mq~z!

. ~1b!

The second MCT equation is obtained by writing the ker
as a sum of a regular term and a contribution describing
cage effect. The latter is treated by Kawasaki’s factorizat
approximation for the force correlations. It is found to be
quadratic functional of the density fluctuation
(kW1pW 5qW V(qW ,kW ,pW ) Fk(t) Fp(t). For the sake of simplicity,
the regular term shall be neglected in the following. Furth
more, the wave-vector modulus will be discretized toM val-
ues with equal spacingh. Thus,q, k, p can be considered a
labels running from 1 toM. As a result, the kernel is given a
a quadratic mode-coupling polynomialFq of the M correla-
tors Fq(t), q51, . . . ,M :

mq~ t !5Fq@Fk~ t !#5(
kp

VqkpFk~ t ! Fp~ t !. ~2!

The positive coupling coefficientsVqkp are given bySq and
cq @17#. Anticipating these equilibrium quantities to b
known, Eqs.~1a! and ~2! are closed.

Equations~1! and~2! exhibit a transition from liquid-state
dynamics in the regimeT.Tc or w,wc to glass-state dy-
namics forT<Tc or w>wc . In the former regime the den
sity fluctuations decay to zero for long times,Fq(t→`)
50. The ideal glass states exhibit a nontrivial long-tim
limit, which is called the nonergodicity parameter,f q
5Fq(t→`).0. It is the Debye-Waller factor of the glas
At the transition, this long-time limit is discontinuous, an
the jump is called a critical nonergodicity parameter or p
teau, f q

c5 f q(T↗Tc ,w↘wc).0. At the critical point, the
correlators decay algebraically:Fq(t)5 f q

c1hq(t/t0)2a

1O„(t/t0)22a
…. The exponenta, 0,a,1/2, is called the

critical exponent, andhq.0 is denoted as the critical ampl
tude.t0 marks the time scale of the transient from the mic
scopic motion to the relaxation dynamics of the MCT. T
MCT a process is defined as the dynamics for those tim
where the correlators of the liquid decay from the plateauf q

c

to zero. The MCTb process deals with the dynamics, whe
the correlators are near the plateau, i.e.,uFq(t)2 f q

cu!1. The
i

l
e
n

-

-

-

s,

first relaxation step of the anomalous dynamics is given
the initial part of theb process; it deals with the decay to
wards the plateau for times outside the transient: (t/t0)@1,
Fq(t)> f q

c . The second step is thea decay in the liquid. Its
initial part is identical with the final part of theb process,
and it follows von Schweidler’s lawFq(t)2 f q

c}2hqtb. The
exponentb, 0,b<1, is called the von Schweidler exponen

In a leading-order expansion in the small parame
uFq(t)2 f q

cu one finds the universal results for theb process.
There holds the factorization theorem

Fq~ t !2 f q
c5hqG~ t !. ~3!

The dependence on time and on control parameters is g
by the q-independent functionG(t), which is called theb
correlator. It is determined by the equation

s2lG~ t !25
d

dtE0

t

G~ t2t8!G~ t8!dt8, ~4!

to be solved with the initial conditionG(t→0)5(t/t0)2a

1O(ta). The numberl, 0,l,1, is referred to as the ex
ponent parameter.s is a smooth function of the control pa
rameters and is called the separation parameter. Its zero
fines the critical point. Expanding in leading order in th
distancee, one can writes5Ce , C.0.

From Eq.~4!, one derives the first scaling law

G~ t !5csg6~ t̂ !, e:0 t̂5t/ts . ~5!

Here,cs5Ausu denotes the amplitude scale, andts abbrevi-
ates the first characteristic time scale of the MCT-transit
scenario:

ts5t0 /usu1/2a. ~6a!

The master functionsg6( t̂ ) are determined byl as solutions
of Eq. ~4! for s561, respectively. They interpolate mo
notonously between g6( t̂!1)5 t̂2a and g1( t̂@1)
51/A12l or g2( t̂@1)52Bt̂b. von Schweidler’s law is
obtained as the long-time limit on the scalets in the form:
Fq(t)5 f q

c2hq(t/ts8 )b. Here ts8 abbreviates the second cha
acteristic scale of the theory:

ts85B21/bt0 /usug, g5~1/2a!1~1/2b!. ~6b!

Thea process obeys fore→0 the second scaling law, calle
the superposition principle,

Fq~ t !5F̃q~ t̃ !, t̃ 5t/ts8 . ~7!

The control-parameter-independent master functionF̃q( t̃ )
exhibits the initial decayF̃q( t̃ )5 f q

c2hqt̃ b1O( t̃ 2b). The pa-
rametersf q

c , hq , andl are determined byFq from Eq. ~2!
for control parameters at the critical point. The same ho
for the functionF̃q( t̃ ). The constantC is determined by the
first Taylor coefficient ine of the deviations ofFq from its
value at the critical point. Formulas for these quantities c
be found in Ref.@16#, where also the original work is cited
The theory for the leading corrections to the quoted res
has been worked out in Ref.@17#.
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The calculations in this paper will be done for the ha
sphere system~HSS!. The temperature does not enter t
structure, but determines the time scale via the thermal
locity only: v2}T. The relevant control parameter is th
packing fraction:w5p(rd3)/6, whered is the particle diam-
eter. The structure factor will be calculated within th
Percus-Yevick theory@24#. The discretization will be done
for M5100 wave-vector values with step sizehd50.4. For
this model, all the mentioned MCT quantities have been
ported in Ref.@17#. In particular it was foundwc50.516,
C51.54,

l50.735, a50.312, b50.583, g52.46, B50.836.
~8!

The results for the glass transition of the HSS are do
mented comprehensively in Refs.@17,18#, albeit for a
Brownian microscopic dynamics. The bifurcation scena
for the model with Newtonian dynamics as defined by E
~1! and~2! is demonstrated for the wave vectorq510.6/d in
Ref. @25#, where the transient time scale was determinedt0
50.0236(d/v). For the presentation of our results in the fo
lowing figures, the units of length and time will be chosen
that d51 and d/v51. The control parametersw shall be
cited by the logarithmx of the distance parametere:

~w2wc!/wc5e56102x. ~9!

As in the previous work@17,18,25#, the MCT equations are
solved in the time domain. The solutions are then Lapl
transformed to getFq8(v)1 iFq9(v). Similarly, the trans-
s-
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-
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e

formed kernelmq8(v)1 imq9(v) is calculated frommq(t) in
Eq. ~2!. These results are used to compare the left-hand
of Eq. ~1b! with the right-hand side. Thereby a verification
the numerical solutions is obtained.

B. The solute

As a model for a dilute solution of molecules we sh
consider a single linear molecule immersed in a simple s
tem. The position of this molecule is described by the tens
density fluctuations% j

n(qW )5Rj
n(eW )exp(iqW•rW). Here,rW denotes

the center-of-mass position andeW abbreviates the axis of th
molecule. TheRj

n are related to the spherical harmonics b

Rj
n(eW )5 i jA4p Y j

n(eW ). The solute-solvent equilibrium corre
lations are described by the generalized structure fac
SJ(q)5^%* (qW 0)%J

0(qW 0)&, where qW 05(0,0,q). The proper
generalization of the density correlators for simple syste
are tensor-density correlators for the molecu

^% i
m(qW 0 ,t)* % j

m(qW 0)&. The MCT for these quantities shall b
simplified by restricting the correlators to the diagonal e
ments

F~q jm,t !5^% j
m~qW 0 ,t !* % j

m~qW 0!&. ~10!

Correlation functions for wave vectorsqW different from q0
W

can be obtained from the specified ones by elementary tr
formations@10#.

The first equation of the MCT for the molecule dynami
reads@10#:
F~q jm,z!5
21

z2
VTq

2

z1VTq
2 ~q!mT~q jm,z!

2
VR j

2

z1VR j
2 mR~q jm,z!

. ~11!
f.

-

ion
rr-

la-
Here,VT,q5vq is the characteristic frequency for the tran
lational motion of a tagged particle.VR, j5vRAj ( j 11) is the
analog for the rotational dynamics, wherej ( j 11) plays here
and in the following a similar role asq2 for the translational
motion. The frequencyvR denotes the thermal velocity fo
the rotation. The relaxation kernelsmT andmR are approxi-
mated along the same lines as indicated above for sim
systems. They are obtained as a functional of the den
correlators of the solvent, multiplied by the tensor-dens
correlators of the solute@10#. Let us discretize the wave vec
tor to, say,M 8 values with equal spacingh8. Let us also
restrict the angular-momentum index by some upper cu
value l co . One obtains the kernels as mode-coupling po
nomials

ma~q jm,t !5Faq jm@F~kln,t !,Fp~ t !#

5 (
kpln

Vaq jm~kpln!F~kln,t !Fp~ t !,

a5R,T. ~12!
le
ity
y

ff
-

The positive coefficientsVaq jm(kpln), j ,l 50,1, . . . ,l co are
given in Ref.@26# as a specialization of the results in Re
@10#. They are expressed in terms ofSq and SJ(q) for J
50,1, . . . ,2l co . Anticipating Sq , SJ(q), and Fq(t) as
known, Eqs.~11! and ~12! are closed equations for the de
termination of theM 8( l co11)2 correlatorsF(q jm,t).

The quantities of main interest for a statistical descript
of the rotation of the molecule are the reorientational co
elators, defined with the Legendre polynomialsPj :

C( j )~ t !5^Pj~eW~ t !•eW !&, j 51,2, . . . . ~13a!

They are the long-wavelength limits of the general corre
tors; F(q→0 j 0,t)5C( j )(t) @10#. One gets from Eq.~11!
the fraction representation in analogy to Eq.~1b!:

C( j )~z!5
21

z2
VR j

2

z1VR j
2 mj

R~z!

. ~13b!
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Here the kernelmj
R(z) is theq→0 limit of mR(q j0,t). Car-

rying out the limit in the general formula formR(q j0,t) @10#
and discretizing the wave-vector integral afterwards, o
finds:

mj
R~ t !5F@F~k jm,t !,Fk~ t !#5(

jkln
Vkln

j F~kln,t !Fk~ t !.

~14!

The positive coupling coefficientsVkln
j are listed in Ref.@26#.

After evaluation ofF(kln,t) and Fk(t) the correlators for
theM 8 values ofk, Eq.~14! yields the kernelmj

R(t). Fourier-
Laplace transformation givesmj

R(z) and Eq.~13b! provides
C( j )(z). Fourier-cosine transformation of the spectru
C( j )9(v) leads toC( j )(t).

The theory shall be applied for a dumbbell consisting
two equal fused hard spheres of diameterd and distancezd
between the centers. Thus, besides the packing fractiow,
there is the elongation parameterz as the second contro
parameter specifying the structure. The structure fac
SJ(q) and the corresponding pair correlation functionsgJ(r )
are evaluated within the Percus-Yevick theory@27#. Figure 2
exhibits the probability distribution to find a solvent partic
in the plane through the symmetry axis of the dumbbell. T
upper panel, calculated forz50.80, shows a pronounce
quadrupolar pattern extending over several shells. For
small elongationz50.33, the lower panel shows that aniso
ropy is almost lost from the third shell onwards. The calc
lations of the dynamics will be done for such moment
inertia thatvR /d5A2v/d. The discretization will be done
with M 8550 wave vectors with spacingh850.8. The cutoff
for the angular-momentum index is chosen asl lo57 for z
50.80 andł lo55 for z50.33. The equation of motion~11!
is transformed to an integrodifferential equation in analo
to Eq. ~1a! and then solved by an algorithm similar to th
used for the standard MCT problem@26#.

III. RESULTS

A. General features of reorientational relaxation

Figure 3 demonstrates the transition scenario for the
ute correlators for two representative wave vectorsq and
three values of the angular momentum indexj. The calcu-
lated correlators exhibit a very weak dependence on the
licity index m, and therefore only the solutions form50 are
shown. The wave vectorq57.0 is close to the structure
factor-peak position, andq510.6 is near the first minimum
of Sq . The correlator forj 50 is the probability distribution
of the molecule’s center-of-mass position, i.e., the analog
the incoherent-intermediate scattering function for sim
liquids: F(q00,t)5Fq

s(t). Results for j 51 and j 52 deal
with the propagation of the dipole- and quadrupole-den
fluctuations, respectively. The critical-decay curves, i.e.,
solutions forw5wc , organize the bifurcation pattern. The
deal with the stretched decay towards the plateausf c(q j0).
If w increases abovewc , the long-time limits f (q j0)
5F(q j0,t→`) increase above the plateau because the m
ecule gets more tightly localized in the frozen solvent. T
f (q j0) vs q curves are bell shaped, since the molecules
localized with a nearly Gaussian probability distributio
e

f
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-
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l-

e-

f
e
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e

l-
e
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@10#. For w,wc , the correlators exhibit a long-time deca
from the plateau to zero, and this is thea process. The
a-decay time is larger the smaller the wave vectorq, while
thea-relaxation stretching increases with increasingq. Theq
dependence of the relaxation features are similar as obse
and explained previously for the tagged-particle correla
Fq

s(t) for simple liquids. Therefore, the following discussio
shall be restricted to the (q50) limit, i.e., to the reorienta-
tional correlatorsC( j )(t).

Figure 4 exhibits representative decay curvesC( j )(t) for
the liquid state for two separation parameters, and Fig
exhibits an extended set of susceptibility spectrax ( j )9(v)

FIG. 2. Angular-dependent solute-solvent pair-distribution fun

tion g(rW,VW ), calculated within the Percus-Yevick theory, for a to
down symmetric solute molecule consisting of two equal fused h
spheres with elongationz50.8 ~upper panel! and z50.33 ~lower
panel!. The shownx2z plane contains the molecule axis. Gre

corresponds tog(rW,VW )'1, dark and white areas show regions wi
higher and lower probability to find a solvent particle, respective
The cut through the dumbbell is shown hatched. The diameterd of
each sphere is chosen to match that of the surrounding sol
particles. The unit of length is chosen here and in all followi
figures such thatd51. The packing fraction of the hard-sphe

solvent is at the critical valuewc50.516. g(rW,VW ) was approxi-
mated using a Legendre-polynomial expansion with angu
momentum indices up toj 516.



e
ed

t

on

n-

’s

-
he

au:
s
the
I,

y-
re-
ing
e-

,
aks

e

n
g

ar

are
.

time

bed

PRE 61 6939REORIENTATIONAL RELAXATION OF A LINEAR . . .
5vC(j)9(v). The plateaus and critical amplitudes shall be d
noted byf j

c andhj , respectively. They have been calculat
from the mode-coupling functionals@10#, and some ex-
amples are listed in Table I. These parameters specify
leading-order asymptotic results for theb-relaxation process
as explained in Sec. II A for the solvent. The factorizati
theorem holds in analogy to Eq.~3! @10#:

C( j )~ t !5 f j
c1hjG~ t !. ~15!

Theb-correlatorG is the same function as explained in co
nection with Eqs.~4!–~6! for the solvent. This implies for the
critical correlator the asymptotic law

C( j )~ t !5 f j
c1hj~ t/t0!2a1O„~ t/t0!22a

…; s50.
~16a!

FIG. 3. CorrelatorsF for the wave vectorsq57.0 and 10.6,
elongationsz50.80 ~upper two panels! and z50.33 ~lower two
panels!, angular indicesj 50,1,2, and helicity indexm50 as func-
tions of the logarithm of the timet. The unit of time is chosen her
and in all following figures such that the thermal velocityv of the
solvent is unity. Correlators are shown as full lines forj 50,2 and as
dashed lines forj 51. The solutions at the critical packing fractio
are marked by ac and are shown in dotted lines. The packin
fractions are parametrized as (w2wc)/wc5e56102x, and x
51,2,3,4 was chosen. Solutions for the glass states,e.0, are only
shown forz50.80, j 51. Correlators are truncated where necess
to avoid overcrowding of the figure.
-

he

The nonergodicity parameter of the glass state,f j5C( j )(t
→`), exhibits theAs singularity

f j5 f j
c1hjAs/~12l!1O~s!, s→01, ~16b!

and thea-process initial decay is given by von Schweidler
law for t.ts ands→02:

C( j )~ t !5 f j
c@12~ t/ t̃a

j !b1Oj„~ t/ t̃a
j !…2b#,

~16c!
t̃a

j 5~ f j
c/hj !

1/bts8 .

Let us introduce twoad hoc time scales for the descrip
tion of the liquid relaxation outside the transient regime. T
center of theb-relaxation process,tb

j , shall be defined as the
time, where the correlator has decayed to the plate
C( j )(tb

j )5 f j
c . The center of thea process shall be defined a

the time, where the correlator has decayed to 50% of
plateau:C( j )(ta

j )5 f j
c/2. Some values are listed in Table I

and open squares and circles mark thesea- andb-relaxation
times, respectively, in Fig. 4. The slowing down of the d
namics upon approaching the glass-transition point is
flected by the increase of the time scales with decreas
distance parameterueu. The two-step scenario emerges, b
cause the ratio of the scalesta

j /tb
j increases as well. Thea

decay leads to thea peaks of the susceptibility spectrum
which are separated from the microscopic excitation pe

y

FIG. 4. Reorientational correlatorsCj (t) for j 51 and j 52 for
the two elongationsz50.80 andz50.33 as function of log10t. The
solutions at the critical point are shown in dotted lines and
marked bycj . The plateau valuesf j

c are marked by horizontal lines
The distance parameter is chosen ase5(w2wc)/wc52102x with
x53 ~slower decay! andx52 ~faster decay!. Open circles and open
squares mark the characteristic time scalestb

j andta
j for thea and

b process, respectively. The full circles and squares mark the
scales 0.704ts , with ts from Eq. ~6a!, and ts8 from Eq. ~6b!, re-
spectively. The vertical lines indicate the decay interval descri
by the asymptotic formulas for theb process~see text, cf. Fig. 7!.
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by a susceptibility minimum, as is demonstrated in Fig.
There, thea-peak-maximum positions,vmax

j , and the mini-
mum positions,vmin

j , decrease forw→wc2. The open
squares and circles in Fig. 5 demonstrate, thatvmax

j '1/ta
j

and vmin
j '1/tb

j as ueu→0. The two-step scenario implie
that the ratiovmax

j /vmin
j also decreases upon approaching

glass-transition point. Thus, forw→wc2, the a peak gets

FIG. 5. Double-logarithmic presentation of the susceptibil
spectrax ( j )9(v)5vC( j )9(v) for angular-momentum indicesj 51
and j 52 for elongationsz50.80 andz50.33. Spectra for the criti-
cal packing fractionw5wc are shown in dotted lines and ar
marked bycj . The distance parameters aree56102x with x as
given in the panels. In the upper left panel, a regular susceptib
spectrum,x9}v, corresponding to a white-noise fluctuation spe
trum, is indicated by a dashed-dotted straight line of slope un
The open circles and squares mark the frequencies 1/tb

j and 1/ta
j ,

characterizing theb- and a-relaxation process, respectively. Th
full circles and full squares mark the frequencies 1/ts and 1/ts8 ,
respectively.
.

e

more and more separated from the rest of the spectrum
this limit, the plateau height is the relative area under
x ( j )9 vs lnv curve @16#:

f j
c5E

2`

ln vmin
j

x ( j )9~v! d ln vY E
2`

`

x ( j )9~v! d ln v.

~17!

Figure 4 demonstrates that fort&3 the dynamics deals
with oscillatory motion, i.e., with rotations and librations th
are influenced by steric hindrance affects. If these effe
would lead to some fast decay towards the correlator’s lo
time limit, one would find a white-noise low-frequency fluc
tuation spectrum:C( j )9(v)'C( j )9(v50). Equivalently, one
would obtain a regular low-frequency susceptibility spe
trum varying linearly withv, x ( j )9(v)}v, as is indicated
schematically by the straight dashed-dotted line in the up
left panel of Fig. 5. A linear susceptibility spectrum is o
tained for the glass spectra forv!1/ts , since the correlators
approach the limitf j exponentially fort@ts . This is shown
by the (e.0) spectra in Fig. 5. Such regular spectra are a
found for the low-frequency wings of thea peaks, since the
liquid correlators approach zero exponentially fort@ta

j . At
the bifurcation point, however, the critical decay leads to
power-law spectrum which, according to Eq.~16a!, reads

x ( j )9~v!5hj sin~ap/2!G~12a!~vt0!a1O„~vt0!(2a)
….
~18!

For t!ts , the correlators follow the critical decay ifusu is
small. Therefore the spectra are approaching the asymp
va law for 1/ts!v!1/t0, as is demonstrated for the (x
54) results in Fig. 5. The stretching of the first relaxati
step leads to the strong enhancement of the intensity of
spectral minimumxmin

j 5x ( j )9(vmin
j ) relative to any possible

TABLE I. Plateau valuesf j
c and critical amplitudeshj .

z50.80 z50.33

j f j
c hj f j

c hj

1 0.943 0.13 0.303 1.94
2 0.835 0.35 0.286 0.46
3 0.701 0.55 0.052 0.46
4 0.540 0.68 0.006 0.13

ty
-
.

TABLE II. Time scalesta
j andtb

j .

z50.80 z50.33

x52 x53 x52 x53
ta

1 2.753103 7.653105 9.293101 6.513103

ta
2 9.213102 2.563105 1.853102 5.393104

ta
3 4.403102 1.203105 5.983101 4.433103

ta
4 2.413102 6.433104 6.553101 1.743104

tb
1 1.373101 5.423102 3.333101 8.113102

tb
2 1.313101 5.343102 1.033101 4.803102

tb
3 1.323101 5.323102 2.533101 7.243102

tb
4 1.253101 5.223102 1.003101 4.743102
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estimation of a white-noise-background spectrum. This
hancement also is exhibited by the experimental data re
duced in Fig. 1.

Let us consider the probability densityP(h,t)5^d„h(t)
2h…& for the molecule’s axiseW (t) to have the projection
h(t) on its initial directioneW : h(t)5eW (t)eW . Since d„h(t)
2h…51/21( j 51

` ( j 11/2)Pj (h)Pj„h(t)…, one gets

P~h,t !51/21(
j 51

`

~ j 11/2!Pj~h!C( j )~ t !. ~19a!

Thus, knowledge of the set ofC( j )(t), j 51,2, . . . , isequiva-
lent to knowingP(h,t). If the summation overj is under-
stood with the cutoffl co , Eq. ~19a! describes the evolution
of the distribution with the initial value

P~h,t50!51/21(
j 51

l co

~ j 11/2!Pj~h!. ~19b!

Figure 6 exhibits results for the small distance parame
2e5(wc2w)/wc50.001 corresponding tox53. The dotted
lines exhibit P(h,t50)/10, calculated withl co57 for z
50.80, andl co55 for z50.33, respectively. Within the dy
namical window, where the leading-order result for theb
relaxation, Eq.~15!, applies, one gets

P~h,t !5Pc~h!1H~h!G~ t !, ~20a!

FIG. 6. Evolution of the probability densityP(h,t) to find at

time t the molecular axiseW (t) with projectionh(t) onto its initial
direction. The dotted lines are the initial distributions, Eq.~19b!,
downscaled by a factor of 10. The oscillations aroundP(h,t)50
are due to restricting the infinite sum over angular-momentum
dices in Eqs.~19! to j <7 ~upper panel! and j <5 ~lower panel!,
respectively.
-
o-

r

Pc~h!51/21(
j 51

`

~ j 11/2! f j
cPj~h!;

~20b!

H~h!5(
j 51

`

~ j 11/2!hj Pj~h!.

Thus the distribution relaxes towards the distributionPc(h),
which is frozen forw5wc . The relaxation does not exhib
any correlation between changes in time described byG(t),
and variations with angle described byH(h). This is the
scenario expected for relaxation due to dephasing in the
dom distribution of sizes and shapes of the cages produ
steric hindrance for the rotations. Forz50.80, theb regime
extends fromt510 to about 104 as shown in Fig. 4, and the
upper panel of Fig. 6 exhibits the described phenomena
t5102 and t5104. The b-relaxation window is somewha
smaller forz50.33, as will be discussed in quantitative d
tail below in connection with Fig. 7. The dephasing rela
ation for this case is demonstrated in Fig. 6 fort5102 and
103.

The beginning of thea-relaxation process follows von
Schweidler’s law, Eq.~16c!. It is identical with the end of
the b process, and thus it is described within the scena
based on Eqs.~20!. The most drastic difference betwee
large- and small-elongation relaxation shows up for thea
process outside the von Schweidler regime. Forz50.80, the
probability decreases monotonically if the angleQ of the
axis increases from its initial valueQ50 to Q5p. This is
shown in the upper panel of Fig. 6 fort>53105. As time
increases, the probability forh'1 decreases, while it in-
creases forh'21. Thus, the relaxation towards the equili

-

FIG. 7. The full lines exhibit the reorientational correlators r
scaled toc( j )(t)5@C( j )(t)2 f j

c#/hj for two distance parameterse
and the angular-momentum indicesj 5124. The dashed lines
show theb-correlatorG(t)5csg2(t/ts) of the hard-sphere system
obtained from Eqs.~4!, ~5!, and~6a!.
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rium distribution P(h,t5`)51/2 is similar to what one
would expect for diffusion on a sphere. Forz50.33, the
correlators for oddj decay faster than the corresponding c
relators with the even index (j 11). This is demonstrated in
Fig. 4 and by the numbersta

j in Table II. Therefore thea
process consists of an intermediate time step leading
probability distribution that is nearly symmetric with respe
to the equatorh50. Only at later times, the symmetric dis
tribution relaxes to the equilibrium distribution. Figure
shows that, already for the rather short timet5102, P(h,t)
exhibits a minimum. Fort5103, there is an overshooting
effect of the probability foreW (t)52eW : P(h521,t5103)
.0.5; and this effect increases if the time increases tt
5105. Thus, the relaxation pattern is that expected fo
random process of large-angle flips of the molecule’s ax

B. Dipole vs quadrupole relaxation for strong steric hindrance

The equations for the nonergodicity parameters@10# im-
ply that thef j increase towards unity if the coupling coeffi
cients in Eq.~12! are increased towards infinity. For th
strong-coupling limit, one derives from Eq.~19a! that
P(h,t)→d(h21). Because of continuity, for strong ster
hindrance and fort,ts , P(h,t) is a narrowly peaked distri
bution centered aroundh'1. Thus, one expects the expa
sion coefficientsf j for not too large values ofj to form a
smoothly decreasing sequence ofj: f 1. f 2.•••, f j'( f j 21
1 f j 11)/2. Table I demonstrates this result quantitatively
z50.80 andw5wc :

f 1
c. f 2

c. f 3
c. f 4

c , large z. ~21a!

In particular, the ratio (f 1
c/ f 2

c) of the relative strengths of th
a peaks for the dipole relaxation,f 1

c , and for the quadrupole
relaxation, f 2

c , is larger than unity. One cannot conclud
quantitatively fromf 1

c/ f 2
c the ratiox19(vmax

1 )/x29(vmax
2 ) of the

a-peak heights, since the shapes of the spectra dependj.
However, Fig. 5 demonstrates that the two ratios are clos
each other. One can also characterize thea-peak height rela-
tive to the microscopic-peak height, r j

5x ( j )9(vmax
j )/x ( j )9(vmic

j ), or relative to the minimum inten
sity, r j85x ( j )9(vmax

j )/x ( j )9(vmin
j ). From Fig. 5, one infers

r 1 /r 2'4, andr 18/r 28'3, i.e., the (j 51) vs (j 52) enhance-
ment effect appears even more pronounced.

According to Eq.~16b!, the nonergodicity parameters in
crease with increasing (w2wc). On the other hand, 12 f j

c

. f j2 f j
c . Therefore,hj must decrease iff j

c increases, so tha
the strongly coupled parametersf j leave the asymptotic re
gime for Eq. ~16b! for similar magnitudes ofs. Table I
quantifies this result forz50.80. In particular

h1,h2 , large z. ~21b!

The reasoning assumesf j to be large, and thus it cannot b
applied for too largej. There is somej 0, so thathj decreases
with increasingj for j . j 0. Within the frequency window,
where the leading-order asymptotic law for the critical dec
is valid, Eq. ~18!, one derives an enhancement of thej
52) spectrum relative to the (j 51) spectrum, since

x (2)9~v!/x (1)9~v!5h2 /h1 , 1/ts!v!1/t0 . ~22!
-

a
t

a

r

n
to

y

The dotted linesc1 and c2 in the upper panels of Fig. 5
demonstrate this result.

For a strongly near- (h51) peaked probability distribu-
tion P(h,t), one can approximately replace averages
functions of h by the functions of the averagêh&. Thus,
Lebon et al. concludedf j5Pj ( f 1) @28#. Specializing tow
5wc , one quantifies the sequence off j

c in terms of its first
value f 1

c :

f j
c5Pj~ f 1

c!, z→`. ~23a!

Substituting into Eq.~16b! and specializing tos→01, one
can also quantify the sequence ofhj by the first termh1:

hj5Pj8~ f 1
c!h1 , z→`. ~23b!

From Table I one infers, that forz50.80 the error of Eq.
~23a! for j 52 (3,4) is as small as 0.1%(3%,7%), and Eq.
~23b! is obeyed forj 52 (3,4) within 5% (22%,45%).

The strong nonlinear couplings of the structural-relaxat
modes require that all correlators enter the first relaxat
step, the second relaxation step, and the equilibrium s
nearly at the same respective time. This is demonstrate
Fig. 3 for z50.80. The most striking manifestation of th
coupling effect occurs at the center of theb-relaxation win-
dow for s→02. In this case, the factorization theorem, E
~15!, is valid. All correlators cross their plateau at the sa
time, saytb , wheretb is the zero of theb-correlatorG(t).
Because of the scaling law, Eq.~5!, one gets the resulttb

5 t̂2ts , i.e.

tb
j 5 t̂2ts , s→02 . ~24!

Here,ts is the scale from Eq.~6a!, and t̂2 is the zero of the
master function:g2( t̂2)50. For the HSS it readst̂2

50.704 @17#. The open and full circles in Fig. 4 show tha
the asymptotic Eq.~24! is obeyed very well forz50.80.
Since thea processes ofC(1)(t) andC(2)(t) start at the same
time t̂2ts and reach zero nearly at the same time, one
pects fromC(1)( t̂2ts)5 f 1

c. f 2
c5C(2)( t̂2ts) that the decay

time for C(1) is larger than that forC(2):

ta
1.ta

2 , large z. ~25!

Furthermore, theC(1)(t)/ f 1
c vs lnt plot is somewhat steepe

than the corresponding graph forj 52. This means that the
stretching is larger for the (j 52) a process than for the (j
51) a process. If one interpolates the decay functions b
Kohlrausch law,C( j )(t)/ f j

c'exp@2(t/ta)bj#, the stretching
exponent forj 51 is larger than that forj 52:

b1.b2 , large z. ~26!

Stretching can also be quantified by the widthw at half-
height of thea peak of the susceptibility spectrum. Forz
50.80 our model yields for j 51(2,3,4), w
51.16(1.25,1.37,1.50) decades. The Kohlrausch proce
leading to the samew require stretching exponentsb
50.99(0.90,0.82,0.74).

The derivation of the inequality for the time scales can
put on a quantitative level by combining Eq.~16c! with the
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two inequalities in Eqs.~21!. One gets in analogy to Eq
~25!: t̃a

1. t̃a
2 . The a-relaxation law for theC( j )(t) holds in

analogy to Eq.~7!: C( j )(t)5C̃j ( t̃ ). If the shape function
C̃j ( t̃ )/ f j

c would be independent ofj, the ratiota
1/ta

2 would

be equal to the ratiot̃a
1/ t̃a

25@ f 1
ch2 /h1f 2

c#1/b. But the latter is
about 2.1 times larger thanta

1/ta
2 .

C. Dipole vs quadrupole relaxation for weak steric hindrance

There are two universal phenomena that are relevant f
discussion of the dynamics for weak steric hindrance. T
first one concerns the limitz50 of the center-of-mass cor
relatorF( j 50, m50,q,t)5Fq

s(t), which is identical to the
tagged-particle-density correlator of the larger of the t
spheres forming the dumbbell. If the radius of this sphe
sayd1, is of the same order or larger than the radiusd of the
solvent spheres, the steric hindrance is very effective. In
case,Fq

s(t) exhibits the canonical bifurcation scenario ifw
crosseswc , as was discussed comprehensively in Ref.@18#.
This implies that ford1*d the (j 50) correlators exhibit
only a smoothz dependence forz decreasing to zero. A sid
remark shall be added to this conclusion. If the ratio of
diametersd1 /d of a sphere moving in a glass of hard sphe
decreases towards zero, there occurs a percolation trans
at some critical value (d1

c/d). This is a type-A transition, i.e.
a bifurcation where the Lamb-Mo¨ssbauer factor decrease
continuously to zero for (d12d1

c) approaching zero from
above@15,16#. Because of continuity, it is obvious that for
dumbbell built of sufficiently small spheres,d1,d1

c , there
will be a type-A transition if the elongationz decreases to
some critical valuez* .0. If z crossesz* , the dynamics
changes from one dealing with molecules localized in
hard-sphere glass to one dealing with delocalized molec
motion. This small-z phenomenon for small molecules is n
considered in this paper.

The second universal phenomenon deals with a typ
transition resulting from the fact, that for top-down sym
metrical molecules the MCT equations of motion of t
even-j correlators decouple from the odd-j ones@10,26#. The
even-j correlators couple to the functionFq

s(t), and thus the
conventional transition scenario of this correlator enfor
the same for all other correlators with evenj. However, such
coupling does not exist for oddj. For largez, this results in
no considerable effect. But all coupling coefficients in t
equations of motion approach zero for oddj if z tends to
zero. Consequently, for allw.wc there is some critical elon
gation zc(w) for a type-A transition. For the studied mod
zc(w),zc(wc)50.296@10,14#. Choosingz sufficiently close
to zc(w), it can happen that for oddj, f j, f j 11 or even f j
, f j 13 @10#. The transition atzc(w) shall not be studied in
this paper. For the demonstration of the small-„z2zc(wc)…
phenomena, the valuez50.33 has been chosen so large th
the canonical sequence for the plateau values in the (q50)
limit, Eq. ~21a!, is not violated, as is quantified in Table
But it is chosen so small, that the precursor effects of
type-A transition seriously influence the results for t
dumbbell dynamics. Thereby, the results are also represe
tive for such cases, where the type-A transition singularity
avoided@15# due to a weak breaking of the top-down sym
metry of the solvent-solute interaction.
a
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The even-j correlators show the conventional behavio
Therefore, the discussion of their trends with decreasinz
for fixed j can be held analogously to that given in Sec. III
for the trends with increasingj for fixed largez. Thus one
understands that the (j 52) a process forz50.33 is weaker,
faster, and more stretched than that forz50.80, as it is dem-
onstrated in Figs. 4 and 5. The half-width of thea peak for
j 52(4) is w51.66(1.86) decades as for a Kohlrausch p
cess with exponentb50.67(0.59). Notice in particular from
Fig. 4, that theb-relaxation scaletb

2 for the x53 result is

close to thez- andj-independent numbert̂2ts from Eq.~24!.
For x52, the asymptotic formula is obeyed reasonably,
the preasymptotic corrections are larger forz50.33 than for
z50.80.

The most obvious precursor of the type-A transition is t
suppression of the plateau valuesf j for odd j. This leads to a
violation of the rule (f 11 f 3)/2' f 2, as is quantified in Table
I. The general qualitative reasoning from Sec. III B explain
that the suppression off 1 is connected with an enhanceme
of h1 : h1(z50.33)/h1(z50.80)'15. The amplitudeh1 is
given by the resolvent of the so-called stability matrix, and
a type-A transition the resolvent exhibits a pole@15,16#.
Hence h1„z→zc(w)…/h2„z→zc(w)…→`, and the regular
trend, Eq.~21b!, is reversed:

h1.h2 , small z. ~27!

For our example one infers from Table I thath1 /h2'4.2.
According to Eq.~22!, the critical spectrum for the dipole
relaxation is considerably larger than that for the quadrup
relaxation, as is demonstrated by the dotted lines in the lo
two panels of Fig. 5.

Combining Eq. ~27! with von Schweidler’s law, Eq.
~16c!, one concludes that theC(1)(t) vs lnt curve crosses its
plateauf 1

c much steeper than theC(2)(t) vs lnt curve. This is
illustrated in the lower panel of Fig. 4. Hence thea relax-
ation of the (j 51) response is faster than the one of thej
52) response:

ta
1,ta

2 , small z. ~28!

Again the order for largez, Eq.~25!, is reversed. From Table
II, one infers for x53, ta

1/ta
250.12. Accordingly, the

a-peak positions for the (x53) spectra forj 51 andj 52 in
the lower panels of Fig. 5 differ by about one order of ma
nitude. For the ratio of the von Schweidler scales in E
~16c!, one getst̃a

1/ t̃a
25@h2f 1

c/h1f 2
c#1/b→0 for z→zc , and

this identifies the smallness of the ratiot1/t2 as a precursor
of the type-A transition. The preceding discussion is va
more generally and explains that all the odd-j correlators
decay faster than the nearby even-j ones. As a result, the
probability distribution P(h,t) approaches first an eve
function of h, before the equilibrium value 0.5 is obtaine
as is demonstrated in the lower panel of Fig. 6.

D. b-relaxation scaling

The factorization theorem for theb relaxation, Eq.~15!,
means that the rescaled correlatorsc( j )(t)5„C( j )(t)2 f j

c
…/hj

are given independently fromj by the b-correlatorG(t) of
the solvent. The latter obeys the scaling law, specified
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6944 PRE 61W. GÖTZE, A. P. SINGH, AND TH. VOIGTMANN
Eqs.~4!–~6a!. For fixed rescaled timet̂5t/ts , the cited for-
mulas deal with the results correctly up to orderAusu @16#.
The leading corrections are of orderusu, and they explain the
range of validity of the leading results for separationse @17#.
Figure 7 demonstrates these statements. On a 10% acc
level the leading-order results describe4%(18%;45%;20%)
of the decay of the correlators around the plateau foz
50.80, j 51(z50.80,j 52;z50.33,j 51;z50.33,j 52).
These decay intervals are indicated in Fig. 4 by vertical lin
For e520.001, the corresponding dynamical window e
tends from aboutt510 to about 105, while it extends from
about t53 to aboutt5100 for e520.01. This discussion
requires a reservation: The corrections to the scaling res
can lead to such a violation of Eq.~24!, which appears as a
offset of the plateau@17#. This offset can be noted in th
lower panel of Fig. 7 for the odd-j results. The good descrip
tion of theb decay of the (z50.33) results for oddj holds
only after a correction of the offset. Fort*104, the correc-
tion effects cause thec( j )(t) for z50.80 to differ fromG(t);
one infers from Fig. 7 that thec( j )(t) increase with increas
ing j. The general results for the theory of the correctio
imply that then alsoc( j )(t) increases withj for t&10 @17#.
The c( j )(t) vs lnt curves do not intersect fort̂2ts but they
touch each other as is demonstrated in the upper pane
Fig. 7. Corresponding results also hold forz50.33 after the
mentioned offset is eliminated.

Equations~5! and ~15! lead to the scaling law for the
susceptibility spectra:x ( j )9(v)/hj5csx̂6(vts). The master
spectrax̂6(v̂)5v̂g69 (v̂) are given by the Fourier-cosin

transformg69 (v̂) of the master functionsg6( t̂ ). The master
spectrum for the glass state describes the crossover fro
regular spectrum for small rescaled frequencies,x̂1(v̂!1)
}v̂, to the critical spectrum at large rescaled frequenc
x̂1(v̂@1)}v̂a. It deals with the knee exhibited by the spe
tra for e.0 andx53,4 in Fig. 5. The master spectrum fo
the liquid describes the crossover from the von Schweid
high-frequency tail of thea peak,x̂2(v̂!1)}1/v̂b, to the
critical decay for large rescaled frequencies,x̂2(v̂@1)
}v̂a. The results describe in the small-s limit the
b-relaxation minimum as it can be seen in Fig. 5 for thex
53 andx54 results. In particular, the factorization theore
explains why the spectral minimavmin are located at the
same position independently ofj and z. The leading-order
formulas imply vmin5v̂min /ts , where v̂min denotes the
minimum of the master spectrumx̂2 . For the hard-sphere
system, one getsv̂min51.56 @17#.

Obviously, theb-relaxation scaling laws can describe t
susceptibility minimum only for such small distance para
eters, for whichvmin is located in that frequency window
where the (s50) spectrum exhibits the asymptoticva law,
Eq. ~18!. Figure 5 shows that for the model under study t
window is restricted tov,0.01. This means, thatvmin has to
be located about three decades below the peak of the m
scopic susceptibility spectrum. Forv.0.01, the critical
spectrum is modified by crossover effects to the trans
dynamics. The susceptibility minimum withvmin.0.01 is
due to the crossover of thea-peak tail to the microscopic
excitation spectrum; it cannot be discussed by the unive
acy
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asymptotic laws for the MCT bifurcation. One conclud
from Fig. 5, thatueu,1022 needs to be satisfied in order t
apply theb-scaling laws for the model under study.

E. a-relaxation scaling

The a-relaxation scaling law reads for the reorientation
correlators in analogy to Eq.~7!:

C( j )~ t !5C̃j~ t̃ !, t̃ 5t/ts8 . ~29!

The e-independent master functionC̃j obeys as initial con-
dition the von Schweidler law:C̃( j )( t̃ )5 f j

c2hj t̃
b1O( t̃ 2b).

The superposition principle for the susceptibility spec
readsx ( j )9(v)5x̃ ( j )9(ṽ) with ṽ5vts8 denoting the rescaled
frequency. Thee-independent master spectrum is given
the Fourier-cosine transform of the master correlat
x̃ ( j )9(ṽ)5ṽC̃( j )9(ṽ). Consequently, the above-define
a-relaxation time scalesta

j and susceptibility maximum po
sitionsvmax

j read

ta
j 5 t̃ j ts8 , vmax

j 5ṽ j /ts8 , ~30!

where t̃ j is defined byC̃( j )( t̃ j )5 f j
c/2 and ṽ j denotes the

peak frequency ofx̃ ( j )9(ṽ). The scaling law implies that a
representation ofC( j )(t) as a function of the rescaled tim
t/ta

j should superimpose correlators for different distan

parameterse on the common curveC̃( j )( t̃ / t̃ j ). Asymptotic
validity means that the ln(t/ta

j ) interval, where the scaling
law is obeyed, expands to arbitrary size fore→0. A corre-
sponding statement holds for the representation of the
ceptibility peaks as functions of the rescaled frequency. T
corrections to the leading-order asymptotic laws are larg
the larger the critical amplitudehj is @17,18#. Figures 5 and 8

FIG. 8. Reorientational correlatorsCj (t) for j 51,2 and z
50.80 andz50.33 for various distance parameterse52102x, pre-
sented as functions of log10(t/ta

j ). Thea-relaxation-time scaleta
j is

defined byC( j )(ta
j )5 f j

c/2. The horizontal lines indicate the plateau
f j

c .
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demonstrate that the described scenario for the evolutio
thea process is valid forz50.80, and also forz50.33 in the
case j 52. For strong steric hindrance, thea-scaling law
works for larger values of (wc2w), than theb-scaling law.
This is so, because the leading corrections to thea-scaling
law are of relative sizeO(ueu), while they are of relative size
O(Aueu) for the b-scaling law@17#.

Figure 8 demonstrates a drastic (j 51) vs (j 52) effect of
the a scaling forz50.33. The dipole correlators do not e
hibit the superposition principle forueu.1024, nor do the
correlators for the other odd values ofj. For j 51 the plateau
emerges only for extremely small values of the distance
rameterueu<1024. Thea-peak heights of the dipole spect
decrease with decreasingueu in Fig. 5 in contradiction to the
scaling-law prediction. This anomaly is caused by the la
size of the critical amplitudeh1, which was explained in
connection with Eq.~27!. More precisely, it is caused by th
large percentage of the decay ofC(1)(t) described by the
b-scaling law as is indicated by the vertical lines in Fig.
To formulate this observation quantitatively, let us remem
that the decay of the correlator near the plateau is descr
by Eqs.~5!, ~6!, and~15!: C( j )(t)5 f j

c1hjAusug2(t/ts). The

master functiong2( t̂ ) for small positive values and all nega
tive ones is well approximated byĝ( t̂ )52Bt̂b1B1 /(Bt̂b).
Here,B1 is determined by the exponent parameterl and for
our solvent model readsB150.431 @17#. Thus one gets for
C( j )(t)& f j

c within the window for the validity of the
b-relaxation scaling law:

C( j )~ t !5 f j
c2Ausuhj$B~ t/ts!b2B1 /@B~ t/ts!b#%.

~31a!

The leading corrections to this formula can explain the p
sible offset off j

c or, equivalently, of the scalests @17#, which
was noticed above in connection with Fig. 7 forz50.33.
Equation ~31a! can be rewritten asC( j )(t)5@ f j

c2hj t̃
b#

1hj usuB1 / t̃ b. Here, the bracket is thea-scaling-law de-
scription of the initial part of thea process, and the term
proportional toB1 is the leading correction. The correctio
term to thea-scaling law deals with that part of theb pro-
cess below the plateau, which is not given by the von S
weidler’s large-t̂ asymptote. Therefore, one can write that f
the a process for not too large values of rescaled timet̃ :

C( j )~ t !5C̃( j )~ t̃ !1hj usuB1 / t̃ b. ~31b!

The analog of this formula was shown in Ref.@17# to de-
scribe the evolution of thea process of the density correla
tors of the HSS perfectly forueu<0.1. It was also shown tha
the corresponding spectrum describes the susceptibility p
to increase above the scaling-law constantx̃9(ṽmax) if the
separationueu increases from 1022 to 1021.

In Fig. 9, the evolution of the (j 51) a process for small
steric hindrance is reexamined. Instead of rescaling the t
with thead hocscaleta

1 , the theoretically motivated scalets8
is chosen. One recognizes, that the found scenario does
exhibit any qualitative peculiarity anymore, compared
what is presented in Fig. 8 forz50.33 and j 52. The (j
51) vs (j 52) anomaly is identified as an anomaly of th
of
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size of the corrections only. In the case of the small elon
tion, the distance parameterueu has to be taken almost tw
orders of magnitude smaller forj 51 in order to render the
corrections to thea scaling as small as found forj 52. For
ueu*1023, even including the leading corrections to vo
Schweidler’s law, one can explain the relaxation from t
plateau only up to some offset in the time scale. This
demonstrated in Fig. 9 by the dotted lines forx52,3.

Two remarks concerning tests of the second scaling
shall be added. The definition of the time scaleta

j used in
Fig. 8 was arbitrary. Let us consider more general definitio
to be parametrized by a numberk.1 and denoted astk . The
subscriptsa andj shall be dropped for the sake of simplicity
and the definition shall beC( j )(tk)5 f j

c/k. If the scaling law

is valid, one finds in analogy to Eq.~30! tk5 t̃ kts8 . Here, t̃ k

is defined byC̃( j )( t̃ k)5 f j
c/k. In this case, the choice ofk is

irrelevant, since the ratio of two different scales ise inde-
pendent,tk1

/tk2
5 t̃ k1

/ t̃ k2
. However, if preasymptotic cor

rections are present, the scales are not equivalent. The r
of validity of the superposition principle expands from lar
to small rescaled times. This follows from Eq.~31b! and is
demonstrated in Fig. 9. One gets fork1,k2,

FIG. 9. Dipole correlatorC(1)(t) of the dumbbell with small
elongationz50.33 and distance parameterse52102x for x52

25 as functions of the logarithm of the rescaled timet̃ 5t/ts8 ~light
full lines!. Here ts8 is the second critical time scale, Eq.~6b!. The

heavy full line is thea-relaxation master functionC̃(1)( t̃ ). The
dotted lines show the leading-ordera-scaling result plus the leading
correction term according to Eq.~31b!. The inset exhibits in a
double-logarithmic plotts8 ~full squares! and thead hocscaling time
ta

1 ~open squares! for x5125. The full straight line with slopeg
52.46 exhibits the power-law formula for the hard-sphere syst
Eq. ~6b!. The dashed line interpolates the open squares fox
51,2,3 with an effective power-law exponentg851.65, while the
dotted line is the asymptotic small-e result forta

1 .
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tk1
/ t̃ k1

,tk2
/ t̃ k2

,ts8 ~32!

For a detection of the superposition principle for an as la
as possible value ofueu, one should therefore choose an
large as possible value ofk for the rescaling procedure
Thereby, the artificial crossing point of the rescaled curve
t5tk is suppressed as much as possible. Otherwise, on
troduces a time scaletk for the characterization of a deca
process that cannot be characterized by a single scale.
outcome of this ill-defined procedure is demonstrated in
lower left panel in Fig. 8. In this case,ta

15tk52 is a param-
eter extracted from the correlator which, according to Fig
is adequately specified by the two scalescs and ts of the
b-relaxation scaling law. The dashed line in the inset of F
9 demonstrates explicitly that the scaleta

1 does not exhibit
the asymptotic behavior forueu>1023. The asymptotic law
ta

15 t̃ 2ts8 is followed only fore<1024.
The second remark concerns the determination of the

ponent g entering the power-law behavior for th
a-relaxation time scale, as specified by Eqs.~6b! and ~30!.
These results are based on the validity of the scaling
@16#. Therefore, one cannot appeal to MCT if one fits pow
laws for scaling times for cases where the scaling law
violated. The dashed line in the inset in Fig. 9 demonstra
that the scaleta

1 for ueu>1023 can be fitted well by a powe
law for a two-decade variation of the distance parameterueu.
The identified effective exponentg8,g describes the varia
tion of ta

1 over three orders of magnitude; but neverthel
g8 has no well-defined meaning for the discussion of o
model.

IV. CONCLUSIONS

Solving the MCT equations of motion for the dynamics
a hard-sphere dumbbell moving in a hard-sphere liquid, fi
principle results have been obtained for the evolution of
glassy dynamics of the reorientational degrees of freedom
a molecule. It was found that one has to distinguish betw
two scenarios, namely, between strong steric hindranc
found for large elongationsz of the dumbbell, and weak
steric hindrance as found for small elongations.

For strong steric hindrance, the mode-coupling coe
cients for the reorientational degrees of freedom in Eq.~12!
are of the same order as the ones entering Eq.~2! for the
description of the translational degrees of freedom of
solvent. The dependence of the various parameters on
angular-momentum indexj is similar to the dependence o
the wave vectorq. One has to viewj ( j 11) as the analog o
q2. While theq dependence reflects the decomposition of
direct solute-solvent correlations in plane waves,
j-dependence reflects the decomposition in spherical
monics. Hence one finds that all reported results on thj
dependence of the reorientational correlatorsC( j )(t) are
similar—and can be explained in a similar manner—
known from the previous work on the tagged-particle-dens
correlatorsFq

s(t) in simple liquids@18,29#. In particular, it
was shown that with increasingj thea-peak-strength param
etersf j

c , Eq.~21a!, thea-relaxation-time scalesta
j , Eq.~25!,

and the stretching exponentsb j , Eq. ~26!, decrease. Thes
findings reproduce qualitatively the three general differen
e
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between dielectric-loss and depolarized-light-scattering sp
tra, which were discussed in Sec. I in connection with Fig
Because of Eq.~1a!, the relaxation of the correlatorF fol-
lows that of the kernelm. Therefore, thea-relaxation time
scale of the (q→0) density fluctuations, sayta

0 , is larger
than the corresponding scale of the longitudinal elas
modulusmq50(z), sayta

m . For strong steric hindrance, th
decay of the cage is the prerequisite for the reorientation
the molecule, and thereforeta

0,ta
2 . Thus one expects the

fourth general feature of thea relaxation listed in the Intro-
duction: ta

2/ta
m.1. For our model one gets fore520.01,

ta
m5130, ta

05240, ta
25920. The ratiota

2/ta
m'7 is of the

same order as cited in Sec. I for PC and Salol.
The mode-coupling coefficients in Eq.~12! decrease to

zero if j tends to infinity. Thus the solutions for largej are
sums of many small terms, which are not strongly correlat
Each term exhibits the short-time von Schweidler law beh
ior for the a relaxationC( j )(t)2 f j

c}(t/ts8 )b. Therefore, one
expects forC( j )(t) the characteristic function of the stab
Lévy distribution exp@(2tGj)

b# @3#. For the density correla-
tors of the solvent, Fuchs has worked out the limit behav
for the a-relaxation master function forq→` and showed
how the Kohlrausch law withb5b arises@30#. We suspect
that a similar derivation can be done for the reorientatio
correlators. Therefore, we conjecture that the sequenc
Kohlrausch exponentsb1.b2.b3.••• converges towards
the von Schweidler exponentb. Molecular-dynamics-
simulation data for a model of water have been interpre
consistently within the standard MCT scenario@31–33#. In
particular,C( j )(t) exhibits conventional behavior@34#. One
concludes that water exhibits strong-steric-hindrance effe
Therefore it is reassuring that the sequence of the first
Kohlrausch exponentsb j decreases with increasingj mo-
notonously towards the von Schweidler exponent@35#. A
further general result, namely, the increase in the initial p
of the series of critical amplitudes, Eq.~21b!, is also found in
the simulation data forj <3 @35#.

Figure 1 exhibits as full lines the (j 51) and (j 52) spec-
tra calculated forz50.80. The lines forx51 andx52 are
the ones discussed in Fig. 5, and the other two refer tx
51.33 andx51.67, respectively. In order to transfer th
MCT results, which are calculated withad hocunits speci-
fied in Sec. II, to the units used by the experimentalists, o
has to introduce three scales. The first and second s
transfer the calculated dimensionless normalized spe
x ( j )9(v) for j 51 and j 52 to the units used by the exper
mentalists for their dielectric-loss and depolarized-lig
scattering spectra, respectively. The third scale shifts our
quency scale to the GHz scale. In the double-logarithm
representation, the first two scales define an overall vert
shift of the diagrams in Fig. 5, while the third scale define
horizontal shift of the figures. Intending to compare data
PC for different temperatures with the MCT results for d
ferent packing fractionsw, one gets a mapping of theT scale
onto thew scale via Eq.~9!. The result is shown as an inse
in Fig. 1. The inset also includes the point with coordina
of the critical packing fraction of the solventwc and the
critical temperatureTc5180 K. This value forTc was deter-
mined for PC by analyzing neutron scattering data@36#, and
has recently been corroborated in an MCT analysis of v
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ous other PC experiments@37#. Our results in Fig. 1 describ
the evolution of the two types of PC spectra semiquant
tively. In particular, the extrapolation of theT-w relation
yields a reasonable estimation of the critical temperature
that system, which is demonstrated through the dashed
in the inset. There is no obvious reason why the stud
dilute solution of hard symmetric dumbbells in a hard-sph
solvent should produce spectra, which are similar to the d
for PC. We consider the found similarities to a large ext
as accidental. The theoretical curves are added in Fig. 1
the mere intention to justify the conclusion: the model stu
ied in this paper and our choice of parameters are rele
for achieving an understanding of experiments in gla
forming molecular liquids.

In order to further corroborate the preceding conclusi
let us consider Fig. 10. The data points exhibit a suscept
ity spectrum of PC measured by incoherent-neutr
scattering spectroscopy for the wave vectorq51.3 Å 21

@38#. A remarkable feature of thea-peak spectrum compare
to the spectra shown in Fig. 1 is that it is less pronoun
relative to the spectrum of the microscopic excitation ba
and that it is more stretched. The two dashed lines in Fig
exhibit the spectra for the center-of-mass correlatorFq

s(t)
5F(q, j 50,m50,t) for q57.4 in order to emphasize tha
this leading approximation for the scattering function can
easily explain the experimental findings. The showna peaks
of Fq

s have a half-width ofw51.34 decades as produced b
a Kohlrausch process with exponentb50.84. The scattering
function Fq(t) is a sum over the contributions of the mo
ecule’s constituents and hence it is a superposition of
density correlators for all angular-momentum indicesj. For
the symmetric dumbbell one gets up to some normaliza
constant@10#

Fq~ t !5(
j

~2 j 11! bj~qz/2!2F~q, j ,0,t !, ~33!

FIG. 10. Susceptibility spectrumx9 of PC as measured by in
coherent neutron scattering@38# for q51.3 Å21 and T5285 K
~circles!. The solid lines exhibit the neutron-scattering response
the discussed MCT model, and the dashed lines are the mere ce
of-mass contributions for packing fractions corresponding tox51
and 2. The computational wave vector isq57.4. As done in Fig. 1,
a rescaling of the theoretical frequencies by a factor of 10 w
chosen to match the scale of the experiment. The normalized t
retical spectra have been rescaled by a factor of 1.1.
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wherebj (z) are the spherical Bessel functions. The full lin
in Fig. 10 exhibit the spectra forFq(t) for q57.4. Thea
peaks have a half-width ofw51.61 decades as produced b
a Kohlrausch law with stretching exponentb50.69. The fre-
quency was rescaled as explained in connection with Fig
and the scale for the spectra was adjusted to meet the on
the data. Comparison of the full line with the dashed one
x52 shows the features distinguishing thea processes of

Fq9(v) from that ofFq
s9(v). The result calculated forx51

shows that the finding for our model semiquantitatively a
counts for thea-peak data.

Some side remarks considering the comparisons in Fig
and 10 might be useful. A schematic-model analysis of
PC data gave the exponent parameterl'0.75 @37#, in good
agreement with the values found from analyses of the s
ceptibility minima with the b-relaxation scaling laws
@19,20,38#. The value is close to the resultl'0.74 for the
hard-sphere system, Eq.~8!. This accident ensures that th
master function for the susceptibility minimum and the v
ues of all anomalous exponents of PC agree within the
perimental uncertainties with the corresponding quantities
the model studied in this paper; and this is a prerequisite
successful fit. Accidently, the ratio of thea-relaxation times
ta

1/ta
2 noted in Table II forz50.8 is only a bit larger than

the ratio of the a-peak-maximum positions of PC
vmax

2 /vmax
1 , exhibited in Fig. 1; and this is another reque

for a reasonable fit. Since the ratio decreases with decrea
z, somez,0.80 could be chosen to reproduce the specifi
( j 51) vs (j 52) effect quantitatively. Nevertheless, it is re
markable that the fit in Fig. 1 reproduces the ratios ofa-peak
maximum intensity to b-minimum intensity
x ( j )9(vmax)/x

( j )9(vmin) reasonably well for both values ofj.
Neither is it trivial that the model reproduces reasonably
( j 51) vs (j 52) effect for stretching.

A new liquid-glass-transition scenario is predicted whi
is referred to as the regime of weak steric hindrance
reorientational motion. It is characterized by (j 51) vs (j
52) effects, more generally by odd-j vs even-j effects,
which are qualitatively different from the results describ
above as strong-steric-hindrance results. The new scen
occurs if precursor phenomena of a type-A-transition
tween two nonergodic states strongly influence
asymptotic results for the conventional MCT bifurcatio
The scenario appears if the particle interactions deviate
too strongly from spherical symmetry, e.g., if a linear mo
ecule exhibits only small deviations from a top-down sy
metry and if there are not too large elongations. Six featu
characterize the weak-steric-hindrance scenario. First~i!, the
plateausf j

c for the reorientational correlators for oddj are
suppressed in comparison to what one would expect by
terpolating or extrapolating the values for nearby even-j pla-
teaus~Table I!. Most importantly~ii !, the critical amplitude
h1 is larger thanh2, Eq. ~27!, so that the canonical orderin
of the hj for small j, Eq. ~21b!, is reversed. Third~iii !, the
percentage of the decay of the reorientational correla
C( j )(t), which can be explained by the leading- plus next-
leading-order asymptotic formulas for theb relaxation is
larger for j 51 than for j 52; as is indicated by the vertica
lines in Fig. 4. The structural relaxation of the reorientatio
is dominated by large-angle flips~iv!, as shown in Fig. 6
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for the dumbbell with elongation z50.33. The
a-relaxation-time scale forj 51 is smaller than forj 52, Eq.
~28!, ~v! so that the canonical order of thea-relaxation
scales, Eq.~25!, is reversed. This can cause theC( j )(t) vs lnt
graphs forj 51 to cross the graphs forj 52, as is shown for
thez50.33 results in Figs. 3 and 4. Finally~vi!, for distance
parametersueu>1023, where the conventionalC( j )(t) vs
ln t/(ta

j ) plot exhibits thea-relaxation scaling law forj 52,
the correlators forj 51 do not show the validity of the su
perposition principle, as is demonstrated in Fig. 8. Nor d
the scaleta

1 , defined as the time for a 50% decay of t
a-relaxation correlator, exhibit the power-law behavior w
the correct exponentg as is shown in the inset of Fig. 9.

A side remark concerning a molecular-dynamics study
the evolution of glassy dynamics in a Lennard-Jones du
bell liquid by Kämmereret al. @39–41# might be in order. It
was reported that the correlators dealing with translatio
degrees of freedom and also for the ones for the reorie
tional dynamics for angular indexj Þ1 could be interpreted
qualitatively within the universal asymptotic MCT formula
However, the evolution of the dipole correlators did not
into the standard MCT pattern. It was found thath1.h2 and
ta

1,ta
2 . A drastic violation of thea-scaling law was noted

quite similar to what is exhibited in the lower left panel
Fig. 8. The scaleta

1 exhibited a deviation from the

asymptotic lawe2g, but a fit by ta}e2g8 with g8 as dis-
cussed in the inset of Fig. 9 was possible. These simula
results forj 51 differ from those for water simulations@32–
35# as well as from the experimental findings for propyle
carbonate quoted in Fig. 1. However, they agree with
features~ii !, ~v!, and ~vi! specified in the preceding para
graph. Moreover, the property~iv! concerning the large
angle flips is also obtained in Ref.@39#. Accidently, thex
52 results in the lower panel of Fig. 5 show that the mi
mum position of thej 51 spectrum exceeds that of thej
52 spectrum by nearly one order of magnitude, in agr
ment with the corresponding finding in Ref.@41#. Further-
a,

C.
s

f
b-

al
a-

t

n

e

-

-

more, thea-peak variation withx shown in the lower left
panel of Fig. 5 is in qualitative agreement with that report
in Ref. @39#. In view of these observations it does not see
impossible that the scenario studied in Refs.@39–41# fits into
the framework of the ideal MCT. However, it is not cle
whether or not the results of Refs.@39–41# can be explained
by our theory for type-A precursors of a dilute solution
molecules. First, the simulation results for the dumbbell l
uid do not exhibit a particular decrease off 1

c relative to f 2
c .

Second, theb-relaxation scaling has not been documen
for the dumbbell liquid and so it is unclear whether or not t
feature~iii ! holds for that case.

Summarizing, it shall be emphasized that all qualitat
features for the evolution of the structural relaxation stud
in this paper have been explained by means of the form
for the leading-asymptotic expansions and their leadi
order-correction formulas for the bifurcation scenario. In th
sense, these asymptotic formulas can be considered a
essence of MCT. However, in order to explain the charac
istic ( j 51) vs (j 52) differences for the relaxation pattern
it is necessary to also understand the general trends o
nonuniversal parameters with variations of wave-vectoq
and angular-momentum indexj. And this requires the use o
MCT as a microscopic theory based on the knowledge of
equilibrium structure.
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