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Reorientational relaxation of a linear probe molecule in a simple glassy liquid
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Within the mode-coupling theor§MCT) for the evolution of structural relaxation in glass-forming liquids,
correlation functions and susceptibility spectra are calculated characterizing the rotational dynamics of a
top-down symmetric dumbbell molecule, consisting of two fused hard spheres immersed in a hard-sphere
system. It is found that for sufficiently large dumbbell elongations, the dynamics of the probe molecule follows
the same universal glass-transition scenario as known from the MCT results of simple liquidsrdlagation
process of the angular-indgx 1 response is stronger, slower, and less stretched than the ophe 2grin
qualitative agreement with results found by dielectric-loss and depolarized-light-scattering spectroscopy for
some supercooled liquids. For sufficiently small elongations, the reorientational relaxation occurs via large-
angle flips, and the standard scenario for the glass-transition dynamics is modified foresfibnses due to
precursor phenomena of a nearby type-A MCT transition. In this case, a major part of the relaxation outside the
transient regime is described qualitatively by Bwelaxation scaling laws, while the-relaxation scaling law
is strongly disturbed.

PACS numbe(s): 64.70.Pf, 61.20.Lc, 61.25.Em

I. INTRODUCTION to liquids of nonspherical molecul¢8—11]. But so far, only
the bifurcation equation for the so-called nonergodicity pa-
During the past ten years, the evolution of structural retameters resulting within the new theory could be solved.
laxation in glass-forming liquids has been intensively studiedComparing these results with the findings of molecular-
using neutron-scattering spectroscopy, various lightdynamics simulations for a liquid of linear molecu[d£,13
scattering techniques, dielectric-loss spectroscopy, andnd for watef11] indicates that the MCT for molecular lig-
molecular-dynamics simulation. Results of this work haveuids is promising. It was also predicted that there can be two
also been used to test the mode-coupling thed®T),  states of nonergodic motion for nonspherical molecules.
which interprets the structural relaxation as precursor of thhese states are connected by a type-A transition if the mol-
glass transition. Originally, the MCT was proposed as arecules exhibit a top-down symmetf9,10,14. Such transi-
approximation approach for the cage effect in liquids?].  tions are generic possibilities in MCT, provided there is
In its simplest version, the MCT equations of motion de-some symmetry in the problem rendering certain mode-
scribe an ideal liquid-to-glass transition, i.e., a bifurcationcoupling coefficients zerg15]. At a type-A transition, the
from ergodic to nonergodic dynamics, if control parametersionergodicity parameters change continuously, whereas at
like temperaturd or packing fractionp cross critical values the conventional MCT transition, referred to in this context
T, or ¢, respectively. This bifurcation is connected with the as a type-B transition, a discontinuity occliis].
evolution of a two-step relaxation scenario entirely deter- In this paper, correlation functions and susceptibility
mined by the regularly changing equilibrium structure. Twospectra shall be discussed, which deal with the glassy dy-
divergent time scales appear, closely connected to tweamics of the orientational degrees of freedom of nonspheri-
power-law decay processes. A detailed description of theseal molecules. The results are obtained as solutions of the
results can be found in R€f3] and references therein. Com- equations of motion derived previoudl%0] for the dynam-
parisons of the theoretical results for simple model systemigs of a linear probe molecule immersed in a simple liquid. A
with experiments done on colloid4,5], and with computer-  top-down symmetric dumbbell of two fused hard spheres
simulation studie$6,7] demonstrate the validity of the mi- will be considered as the molecule, and as the solute, a hard-
croscopic MCT approach. For the solutions of the MCTsphere system is chosen. This model deals with the simplest
equations, a variety of results has been derived byroblem concerning glassy rotational dynamics, namely, the
asymptotic expansions, using as a small parameter the digfluence of the cages formed by the neighbors of the mol-
tance from the critical pointe=(¢—¢)/¢., or e=(T.  ecule on the molecule’s reorientational motion as it is caused
—T)I/T,, respectively. The leading-order results of this ex-by steric hindrance. The dynamics will be exemplified for
pansion establish universality features of the MCT dynamicstwo cases: a molecule with a large elongation and a molecule
Assessments of the theory have been reached by comparimgth a small elongation.
spectra in the GHz regime or relaxation curves within the It will be shown that large elongations lead to strong cou-
picosecond window with the universal results. The outcomepling of the rotational degrees of freedom to the density fluc-
of this work, which is reviewed in Ref 8], leads to the tuations of the solute, such that the glassy dynamics of the
conclusion that MCT properly describes some essential fedatter enforces the validity of all the universal MCT laws for
tures of structural relaxation even for some complicated mothe solvent. Moreover, the corrections to the leading-order-
lecular liquids. asymptotic laws show the same qualitative trends as studied
The MCT for simple systems has been extended recentlfor simple liquids[17,18. A motivation of the present study
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1F ' ' ' ' ' ] =1) response is less stretched than the peak#®, i.e., the
x=2 x=1 X x- half-width of the (=1) peak is smaller than that of the¢ (
=2) peak. If one describes these peaks by the spectra of the

Kohlrausch law,® (t)xe~ 17’ the stretching exponeng
for j=1, Bj—;~0.9[19] is larger than the one foj=2,
Bj-»~0.8[20]. The same threa-peak features are noticed,
if one compares the depolarized-light-scattering spectra of
1 glycerol [21] with the corresponding dielectric-loss spectra
[22]. A fourth general feature to be explained is the large
j= ratio of the a-relaxation-time scale found by depolarized-
0 =2 x=1 1 light-scattering spectroscopy and the one found for the lon-
200K 220K 250K 295K . . . . . .
> gitudinal elastic modulus by Brillouin-scattering spectros-

copy. For Salol, a ratio of about 10 was reportegs8],
while for PC, a factor of about 5 was fouh@0].

The small elongation of concern in this paper is chosen so

2t L L L L L = that it exceeds the critical value for the above-mentioned
-2 - 0 1 2 3 4 type-A transition by about 10%. The theory for the correc-
log ,, (w/21) [GHz] tions to the leading-order asymptotic las7,18 implies

o . that these diverge at a type-A transition. Therefore, the range
FIG. 1. Susceptibility spectrg” of propylene carbonaté®C,  of validity of the universality features of the standard MCT
symbolg and solutions obtained for a symmetric hard-sphere dumbyisy,rcation shrinks upon approaching the type-A transition.
bell with elongation{=0.80 immersed in a hard-sphere solvent i \iji he shown that in our example the standard results are
(full lines, see text for details The symbols represent dielectric- 4 o hinited any more for reasonable choices of the distance
loss spectra measured by Schneideal. [19] (upper pangland parametefe. In particular, it is impossible to identify a two-
depolarized-light-scattering spectra of Btial. [20] (lower panel " ' . .
P g rering sp . P tep scenario for the oddeorrelators, nor ise-relaxation
for temperatures as indicated. The full lines are calculated for th%caling observed ’
distance parameter=(¢— ¢.)/ o= —10 * with x=1, 1.33, 1.67, s ) )
P (o ec)loc The paper is organized as follows. In Sec. Il, the model is

and 2 for angular momentum ind¢x 1 and 2, respectively. Com- : : )
puted frequencies have been rescaled by a factor of 10 to meet ff¢fined, and the MCT equations are noted. After an overview

experimental GHz scale. The calculated susceptibilities have beedf the general scenario for the evolution of the glassy relax-
divided by 2.8 for thg = 1 case in order to normalize the spectra at ation of the reorientational correlatoSec. I1l A), the differ-
wl27m=2 GHz. The inset exhibits packing fractianvs tempera- €nces between the relaxation patterns for §ire X) and
ture T for which the spectra are fitted. Here, the critical value of the=2) response are described for stragc. 11l B) and weak
hard-sphere systeng.=0.516, corresponding to the critical tem- (Sec. 11l Q steric hindrance. In Sec. llI D it is demonstrated
perature of PCT.~180 K, was added. The dashed line demon-how the 8 relaxation is described by the first scaling law,
strates the extrapolation from the fougdT mapping toT, . and in Sec. lll E it is discussed how therelaxation scaling-

law description emerges. The concluding Sec. IV summa-
is the explanation of three general properties ofdheelax-  rizes the results.

ation in molecular liquids, which are exhibited in Fig. 1. In
this figure, experimental susceptibility spectra for the van der
Waals liquid propylene carbonat®C) are reproduced for
four temperatures. One set of data deals with the response for A. The solvent
angular-momentum indej=1; it was obtained by dielectric-
loss sp_ectrogcop;[lg]. '_I'he other set was measureq by the solvent. The basic variables describing the structure are
depolarized-light-scattering spectroscd@@] and deals with . ) -

the (j=2) reorientational dynamics. The data show for e density fluctuations for the wave vectar: gq
=293 K andT=295 K a-relaxation peaks at 4 GHzj (=2« exp(q-r)/VN. Here r*,x=1,2,...N, labels the
—1) and 10 GHz [=2), respectively. These temperaturescenters of the particles. The structure facgr(|o4]%) pro-
exceed the me|t|ng temperatu’fen: 218 K of PC by more vides the Simplest information on the equi“brium distribu-
than 70 K. LoweringT to 200 K, thea peaks of the spectra tion of the particles; herg|) denotes canonical averaging.
are shifted down by about two orders of magnitude. TheBecause of rotational symmetr$, depends on the wave-
shape of ther peak is temperature independent, and the ratiovector modulusy=|q| only. The structure factor can be ex-
of the a-process-time scales, characterizing thepressed through the direct correlation function via the
a-peak-maximum positions for the two valuesjpfs alsoT ~ Ornstein-Zernicke equatios,=1/(1—pc,), where p de-
independent. These are two features that MCT predicts to beotes the particle densif24]. The simplest quantities, char-
universal. The first nonuniversal feature to be understood isacterizing the structural dynamics in a statistical manner, are
that thea-peak intensity, taken relative to that of the band ofthe normalized autocorrelation functions for the density fluc-
microscopic excitations at around 1 THz, is larger for thetuations, called the density correlators®(t)
(j=1) response than for thg € 2) case: the former exceeds =(g4(t)* 4)/Sy. The evolution with increasing time is

the latter by about a factor of 2.7. Second, the=() re- given by the canonical equations of motion. We will also
sponse is slower than the responsejfer2: the ratio of the need Fourier-Laplace transforms for complex frequency
a-peak positions is about 2.5. Third, the peak of the | Imz=0, @y(z), wusing the convention: F(2)

Il. THE MODEL SYSTEM

A system ofN spherical particles shall be considered as
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=ifq exp(zt)F(t)dt. For real frequency, one gets witle  first relaxation step of the anomalous dynamics is given by

=w+i0: F(2)=F'(w)+iF"(w). The imaginary part the initial part of theg process; it deals with the decay to-

F"(w) is called the fluctuation spectrum, ang’(w)  wards the plateau for times outside the transietrity(>1,

= wF"(w) is the susceptibility spectrufi24]. CDq(t)Bfg. The second step is the decay in the liquid. Its
The basic version of MCT consists of two equati¢@$ initial part is identical with the final part of thg process,

The first one is exact and derived within the Zwanzig-Mori and it follows von Schweidler’s Ia\Abq(t)—fgoc — hqtb. The

formalism: exponenb, 0<b=1, is called the von Schweidler exponent.
In a leading-order expansion in the small parameter
t c . .
a’(zq)q(t)+Q(2]q)q(t)+Q(2]J Mq(t—t') dyPy(t')dt’ =0. |®4(t) —fgl one finds the u_nlversal results for tjgeprocess.
0 There holds the factorization theorem

(1a

Here,Qq=vq/\/S—, with v denoting the thermal velocity.
The relaxation kernemy(t) is a fluctuating-force correlator. The dependence on time and on control parameters is given
The equation has to be solved with the initial conditionby the g-independent functiors(t), which is called thes

D4 (t)=1-(Q4t)%/2+ O(t3) [24]. Equation(1a) is equiva-  correlator. It is determined by the equation

lent to the double fraction

®4(t)— fS=h,G(1). 3

d rt
_1 0—AG(t)2=af0 G(t—t")G(t")dt’, 4

2
z—$ to be solved with the initial conditioiG(t—0)=(t/ty) 2
z+ Qg my(2) +O(t?). The numbein, 0<A<1, is referred to as the ex-
o _ N ponent parameter is a smooth function of the control pa-
The second MCT equation is obtained by writing the kernelkameters and is called the separation parameter. Its zero de-

as a sum of a regular term and a contribution describing th@nes the critical point. Expanding in leading order in the
cage effect. The latter is treated by Kawasaki's factorizatiorjistancee, one can writes=Ce, C>0.

approximation for the force correlations. It is found to be a  From Eq.(4), one derives the first scaling law
quadratic  functional of the density fluctuations:

Dy(2)= (1b)

Sirp=g V(G.k,p) @y(t) @y(t). For the sake of simplicity, G(t)=c,g.(1), e=0 t=t/t,. (5)
the regular term shall be neglected in the following. Further- . .
more, the wave-vector modulus will be discretizedtoval-  Here,c,= V|| denotes the amplitude scale, andabbrevi-

ues with equal spacink. Thus,q, k, p can be considered as ates the first characteristic time scale of the MCT-transition
labels running from 1 td4. As a result, the kernel is given as Scenario:
a quadratic mode-coupling polynomi&l, of the M correla-

— 1/2a
tors @ (t), g=1,... M: ty=to/| o] V2. (6a)

The master functiong. (t) are determined by as solutions
mq(t)=Fq[<I>k(t)]=kZ Vakp Pi(t) P(t). (2)  of Eq. (4) for o==1, respectively. They interpolate mo-
P notonously between g.(t<1)=t"2 and g.(t>1)
The positive coupling coefficientg,, are given byS; and  =1/J/1—\ or g_(i>1)=—B1". von Schweidler's law is
Cq [17]. Anticipating these equilibrium quantities to be obtained as the long-time limit on the scdlgin the form:
known, Egs.(18) and(2) are closed. Dy(t)=f5—hg(t/t,)°. Heret,, abbreviates the second char-
Equationg(1) and(2) exhibit a transition from liquid-state  acteristic scale of the theory:
dynamics in the regim@>T_ or ¢<¢. to glass-state dy-
namics forT<T. or ¢=¢.. In the former regime the den- t' =B Wty/|o]”, y=(1/2a)+(1/2b). (6b)
sity fluctuations decay to zero for long time®,(t— =) _
=0. The ideal glass states exhibit a nontrivial long-timeThe « process obeys far— 0 the second scaling law, called
limit, which is called the nonergodicity parametef, the superposition principle,
=®y(t—)>0. It is the Debye-Waller factor of the glass. - o~ - )
At the transition, this long-time limit is discontinuous, and Dy(t)=Dg(t), t=t/t,. )
the jump is called a critical nonergodicity parameter or pla- . -
teau, f5="f4(T /T¢,@\.¢;)>0. At the critical point, the The control-parameter-independent master functia(t)
correlators decay algebraically®,(t)=fg+hy(t/tg)"®  exhibits the initial decaybq(t) = fo— hqtbﬂL O(t?"). The pa-
+O((t/tg) "?®). The exponenia, 0<a<1/2, is called the rametersfg, hy, and\ are determined by, from Eq. (2)
critical exponent, anth,>0 is denoted as the critical ampli- for control parameters at the critical point. The same holds
tude.to marks the time scale of the transient from the miCI’O-for the function&)q(’f)_ The constan€ is determined by the
scopic motion to the relaxation dynamics of the MCT. Thefirst Taylor coefficient ine of the deviations ofF, from its
MCT « process is defined as the dynamics for those timesyalue at the critical point. Formulas for these quantities can
where the correlators of the liquid decay from the platéau  be found in Ref[16], where also the original work is cited.
to zero. The MCTB process deals with the dynamics, whereThe theory for the leading corrections to the quoted results
the correlators are near the plateau, |{®4(t) — fg|<1. The has been worked out in RefL7].
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The calculations in this paper will be done for the hard-formed kernelmg(w) +im;(w) is calculated frommg(t) in
sphere systenfHSS. The temperature does not enter thegq. (2). These results are used to compare the left-hand side

structure, but determines the time scale via the thermal vesf Eq. (1b) with the right-hand side. Thereby a verification of
locity only: v2x<T. The relevant control parameter is the the numerical solutions is obtained.

packing fractionip= m(pd®)/6, whered is the particle diam-

eter. The structure factor will be calculated within the
- . . . B. The solute
Percus-Yevick theory24]. The discretization will be done ' '
for M =100 wave-vector values with step siael=0.4. For As a model for a dilute solution of molecules we shall

this model, all the mentioned MCT quantities have been reconsider a single linear molecule immersed in a simple sys-
ported in Ref.[17]. In particular it was foundp.=0.516, tem. The position of this molecule is described by the tensor-
C=1.54, density fluctuation® (q) = R(€)exp(q-T). Here,r denotes
A=0735 a=0312, b=0.583, y=2.46, B=0.836. the center—of—m?ss position aadabbrewatgs the axis Qf the .
) molecule. TheR;" are related to the spherical harmonics by:
N R/(€)=i1\V47 Y}(€). The solute-solvent equilibrium corre-
The results for the glass transition of the HSS are docutations are described by the generalized structure factors
mented comprehensively in Ref$l17,1§, albeit for a SJ(Q)=<Q*(%)Q9(QO)), where go=(0,0g). The proper

Brownian microscopic dynamics. The bifurcation scenarioganerajization of the density correlators for simple systems

for the model with Newtonian dynamics as defined by Eqsg ¢ tensor-density  correlators for the molecule,

(1) and(2) is demonstrated for the wave vectpe 10.64 in (Qf‘(ao't)*QfL(&o»- The MCT for these quantities shall be

Ref. [25], where the transient time scale was determityped -1 19 - ;
—0.0236(/v). For the presentation of our results in the fol- simplified by restricting the correlators to the diagonal ele-
ments

lowing figures, the units of length and time will be chosen so

thatd=1 andd/v=1. The control parameterg shall be . A VK Al
cited by the logarithnx of the distance parameter ®(ajn.0=(ef (.1 ¢{(Go))- (0
(o= @) pc=€=+10"%. (9)  Correlation functions for wave vectors different from g

can be obtained from the specified ones by elementary trans-
As in the previous worK17,18,25, the MCT equations are formations[10].
solved in the time domain. The solutions are then Laplace The first equation of the MCT for the molecule dynamics
transformed to getby(w)+idy(w). Similarly, the trans-  reads[10]:

-1
d(qju,z)= 11)
(Qju,2) oz, 2, (
Z_ . - .
2+ 0%(M(ajp,2)  z+ QR Me(qju,2)
|
Here, (1 q=v( is the characteristic frequency for the trans- The positive coefficient¥ ,q;,(kplv), j,1=0,1,... ], are

lational motion of a tagged particl®g j=vgVj(j+1) isthe  given in Ref.[26] as a specialization of the results in Ref.

analog for the rotational dynamics, wheig +1) plays here [10]. They are expressed in terms 8f and Sy(q) for J

and in the following a similar role ag® for the translational =0,1,...,2.,. Anticipating Sqr Si(q), and dy(t) as

motion. The frequency denotes the thermal velocity for known, Egs.(11) and(12) are closed equations for the de-

the rotation. The relaxation kernets; andmg, are approxi-  termination of theM’ (I o+ 1)? correlators®(qj u,t).

mated along the same lines as indicated above for simple The quantities of main interest for a statistical description

systems. They are obtained as a functional of the densit9f the rotation of the molecule are the reorientational corr-

correlators of the solvent, multiplied by the tensor-densityelators, defined with the Legendre polynomiBls

correlators of the solutgl0]. Let us discretize the wave vec-

tor to, say,M’ values with equal spacing’. Let us also c(i)(t)z(pj(é(t).é», i=12,.... (133

restrict the angular-momentum index by some upper cutoff

valuel.,. One obtains the kernels as mode-coupling poly-They are the long-wavelength limits of the general correla-

nomials tors; ®(q—0 jOt)=CU)(t) [10]. One gets from Eq(11)
(0] ) = F LB (KI9,1), D o(1)] the fraction representation in analogy to Efpb):

. 1
:k%v Vaqjn(KpIv) @ (Klv, 1) D (1), cl)(z)= o ) (13b)
Rj

- 2 R
a=R,T. (12) z+ Qg M(2)
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Here the kerneij(z) is theq—0 limit of mg(qjOt). Car-
rying out the limit in the general formula fang(qjO,t) [10]

and discretizing the wave-vector integral afterwards, one
finds:

mF(t)=ﬂ¢<kju,t>,¢k<t>]=% Vi, @KIv,t)®(t).
(14)

The positive coupling coefficientg},, are listed in Ref{26].
After evaluation of®(klv,t) and ®,(t) the correlators for
theM’ values ofk, Eq.(14) yields the kernetan(t). Fourier-
Laplace transformation giveij(z) and Eq.(13b) provides
CcW(z). Fourier-cosine transformation of the spectrum
c’(w) leads toCl)(t).

The theory shall be applied for a dumbbell consisting of
two equal fused hard spheres of diameateand distanced
between the centers. Thus, besides the packing fragtjon
there is the elongation parametéras the second control
parameter specifying the structure. The structure factor
S;(q) and the corresponding pair correlation functiggér)
are evaluated within the Percus-Yevick thep2y]. Figure 2
exhibits the probability distribution to find a solvent particle
in the plane through the symmetry axis of the dumbbell. The
upper panel, calculated faf=0.80, shows a pronounced
quadrupolar pattern extending over several shells. For the
small elongationy=0.33, the lower panel shows that anisot-
ropy is almost lost from the third shell onwards. The calcu-
lations of the dynamics will be done for such moment of
inertia thatv/d=\2v/d. The discretization will be done
with M’ =50 wave vectors with spaciry =0.8. The cutoff
for the angular-momentum index is chosenlgs=7 for ¢
=0.80 andt,,=5 for {=0.33. The equation of motiofL1)
is transformed to an integrodifferential equation in analogy g 2. Angular-dependent solute-solvent pair-distribution func-
to Eq. (18 and then solved by an algorithm similar to that tion g(F,ﬁ), calculated within the Percus-Yevick theory, for a top-
used for the standard MCT problef26]. down symmetric solute molecule consisting of two equal fused hard
spheres with elongatiod=0.8 (upper panegland {=0.33 (lower
pane). The shownx—z plane contains the molecule axis. Grey
corresponds tg(r,})~1, dark and white areas show regions with
higher and lower probability to find a solvent particle, respectively.
Figure 3 demonstrates the transition scenario for the solfhe cut through the dumbbell is shown hatched. The diantetér

Ill. RESULTS

A. General features of reorientational relaxation

ute correlators for two representative wave vectgrand
three values of the angular momentum indexhe calcu-

each sphere is chosen to match that of the surrounding solvent
particles. The unit of length is chosen here and in all following

lated correlators exhibit a very weak dependence on the héigures such thati=1. The packing fraction of the hard-sphere

licity index w, and therefore only the solutions far=0 are

solvent is at the critical valueo,=0.516. g(F,ﬁ) was approxi-

shown. The wave vectog=7.0 is close to the structure- mated using a Legendre-polynomial expansion with angular-
factor-peak position, and=10.6 is near the first minimum mMomentum indices up tp=16.

of S,;. The correlator foj =0 is the probability distribution o )

of the molecule’s center-of-mass position, i.e., the analog of10l. For ¢<¢c, the correlators exhibit a long-time decay
the incoherent-intermediate scattering function for simplefom the plateau to zero, and this is tle process. The
liquids: ®(q00£)=®$(t). Results forj=1 andj=2 deal a-decay time is larger 'the_smaller the'wa}ve vecq;)whlle
with the propagation of the dipole- and quadrupole-densityh€ a-relaxation stretching increases with increasingheq
fluctuations, respectively. The critical-decay curves, i.e., thélependence of the relaxation features are similar as observed
solutions fore= ¢, organize the bifurcation pattern. They @nd explained previously for the tagged-particle correlator
deal with the stretched decay towards the plate&(g;jO0). <I>3(t) for simple liquids. Therefore, the following discussion
If ¢ increases abovep., the long-time limits f(qjO) shall be restricted to theg&0) limit, i.e., to the reorienta-
=®(qj0t— ) increase above the plateau because the mofional correlatorsCt)(t). ,

ecule gets more tightly localized in the frozen solvent. The Figure 4 exhibits representative decay cur@s(t) for
f(qjO) vsq curves are bell shaped, since the molecules aréhe liquid state for two separation parameters, and Fig. 5
localized with a nearly Gaussian probability distribution exhibits an extended set of susceptibility speotl‘a"(w)
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. FIG. 4. Reorientational correlatof3/(t) for j=1 andj=2 for

the two elongationg=0.80 and/=0.33 as function of logt. The
solutions at the critical point are shown in dotted lines and are
marked byc; . The plateau valueqC are marked by horizontal lines.
The distance parameter is choseneas(¢— ¢.)/ ¢.=— 10" * with

8 x=3 (slower decayandx=2 (faster decay Open circles and open
squares mark the characteristic time scalgand 7, for the @ and

B process, respectively. The full circles and squares mark the time
log 4t scales 0.704t,., with t, from Eq. (6a), andt, from Eq. (6b), re-
spectively. The vertical lines indicate the decay interval described
by the asymptotic formulas for thé processsee text, cf. Fig. ¥

FIG. 3. Correlatorsb for the wave vectorgy=7.0 and 10.6,
elongations{=0.80 (upper two pane)sand {=0.33 (lower two
panel$, angular indice§g=0,1,2, and helicity indexuy=0 as func-
tions of the logarithm of the time The unit of time is chosen here
and in all following figures such that the thermal veloaityf the
solvent is unity. Correlators are shown as full linesjfer0,2 and as c
dashed lines foj=1. The solutions at the critical packing fraction fi=fj+hjJo/(1-\)+0O(o), o—0+, (16b
are marked by & and are shown in dotted lines. The packing o o )
fractions are parametrized asp€ ¢.)/¢.=e=+10"%, and x and thea-process initial decay is given by von Schweidler’'s
=1,2,3,4 was chosen. Solutions for the glass state€), are only  law fort>t, andoc—0—:
shown for{=0.80,j=1. Correlators are truncated where necessary

The nonergodicity parameter of the glass stdfes C(t
— ), exhibits the\o singularity

to avoid overcrowding of the figure. cl(t)= fjc[l— (t/?-ja)bJr 0; ((t/~rja))2b],

| (169
=wCY'(w). The plateaus and critical amplitudes shall be de- = (f5h)t
noted byfjC andh;, respectively. They have been calculated ) . .
from the mode-coupling functionalgl0], and some ex- Let us introduce twad hoctime scales for the descrip-

amples are listed in Table I. These parameters specify thtion of the liquid relaxation outside the transient regime. The
leading-order asymptotic results for tigerelaxation process Center of thes-relaxation processy, , shall be defined as the
as explained in Sec. Il A for the solvent. The factorizationtimeé, where the correlator has decayed to the plateau:

theorem holds in analogy to E¢B) [10]: CU)(7h)=f¢. The center of ther process shall be defined as
_ the time, where the correlator has decayed to 50% of the
CO(t)=f5+h;G(t). (15  plateau:CY(7),)=f/2. Some values are listed in Table I,

and open squares and circles mark thesand B-relaxation
times, respectively, in Fig. 4. The slowing down of the dy-
namics upon approaching the glass-transition point is re-
flected by the increase of the time scales with decreasing
distance parametek|. The two-step scenario emerges, be-
. cause the ratio of the scaleg/7j; increases as well. The
CO(t)=f+h;(t/ty) "+ O((t/t))"%);  o=0. decay leads to ther peaks of the susceptibility spectrum,
(168  which are separated from the microscopic excitation peaks

The B-correlatorG is the same function as explained in con-
nection with Eqs(4)—(6) for the solvent. This implies for the
critical correlator the asymptotic law
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FIG. 5. Double-logarithmic presentation of the susceptibility
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TABLE I. Plateau valueg| and critical amplitudes; .

-6

-4 -2 0
log ,, ®

-6 -4 -2

log ,, @

£=0.80 (=0.33
3 j ff h; ff h;
3 1 0.943 0.13 0.303 1.94
® 2 0.835 0.35 0.286 0.46
S 3 0.701 055 0.052 0.46
1 4 0.540 0.68 0.006 0.13

more and more separated from the rest of the spectrum. In
this limit, the plateau height is the relative area under the

xW" vs Inw curve[16]:

wj . NG * i
fj::jln min X(j) () dlnw/ J X(l) (w) dInw.
17

Figure 4 demonstrates that fo=3 the dynamics deals
with oscillatory motion, i.e., with rotations and librations that
are influenced by steric hindrance affects. If these effects
would lead to some fast decay towards the correlator’s long-
time limit, one would find a white-noise low-frequency fluc-
tuation spectrumC)’(w)~C®"(w=0). Equivalently, one
would obtain a regular low-frequency susceptibility spec-

spectray!)"(w) = wC1"(w) for angular-momentum indices=1  trum varying linearly withw, /" (w)*w, as is indicated
andj =2 for elongationg’ = 0.80 and; = 0.33. Spectra for the criti- Schematically by the straight dashed-dotted line in the upper
cal packing fractiong= ¢, are shown in dotted lines and are left panel of Fig. 5. A linear susceptibility spectrum is ob-
marked byc;. The distance parameters are- +10 * with x as  tained for the glass spectra fer<1#,, since the correlators
given in the panels. In the upper left panel, a regular susceptibiliyapproach the limif; exponentially fort>t,. This is shown
spectrum,y”=w, corresponding to a white-noise fluctuation spec- by the (¢>0) spectra in Fig. 5. Such regular spectra are also
trum, is indicated by a dashed-dotted straight line of slope unityfound for the low-frequency wings of the peaks, since the
The open circles and squares mark the frequencigsditd 1/, liquid correlators approach zero exponentially fer7l, . At
characterizing the3- and a-relaxation process, respectlvely The the bifurcation point, however, the critical decay Ieads to a

full cmilesI and full squares mark the frequencies,ldnd 1t power-law spectrum which, according to E46a, reads
respectively.

X' (w)=h; sin@m/2)T'(1-a)(wte)*+ O((wtg) ?).
by a susceptibility minimum, as is demonstrated in Fig. 5. (18)
There, thea-peak-maximum posmon&)max, and the mini-
mum  positions, »},,,, decrease forp—@.—. The open small. Therefore the spectra are approaching the asymptotic
squares and circles in Fig. 5 demonstrate, hgt,~1/7), w? law for 1t,<w<1k,, as is demonstrated for the (
and w'}nmw 1/7}3 as |_e|—>0. The two-step scenario implies =4) results in Fig. 5. The stretching of the first relaxation
that the ratiow!,,,/ @), also decreases upon approaching thestep leads to the strong enhancement of the intensity of the
glass-transition point. Thus, fap— ¢.—, the a peak gets  spectral minimuny!,;.= x1)"(wl.) relative to any possible

For t<t,, the correlators follow the critical decay |ifr| is

TABLE II. Time scalesr), and 7).

{=0.80 {=0.33
x=2 x=3 X=2 x=3
™ 2.75x10° 7.65<10° 9.29x 10" 6.51x 10°
2 9.21x 107 2.56x 10° 1.85< 107 5.39x10*
™ 4.40< 107 1.20x10° 5.98x 10" 4.43<10°
™ 2.41< 107 6.43x 10* 6.55x 10" 1.74x 10%
75 1.37x10" 5.42x< 107 3.33x 10 8.11x 10
5 1.31x 10" 5.34x 107 1.03x 10 4.80x 107
5 1.32x10" 5.32x 107 2.53x 10" 7.24}10°
y 1.25x 10" 5.22< 107 1.00< 10 4.74x 107
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FIG. 6. Evolution of the probability densiti?(#,t) to find at FIG. 7. The full lines exhibit the reorientational correlators re-

time t the molecular axig(t) with projection »(t) onto its initial  scaled toc!)(t)=[CU)(t)—f{]/h; for two distance parameters
direction. The dotted lines are the initial distributions, E4Qb), and the angular-momentum indicgs=1—4. The dashed lines
downscaled by a factor of 10. The oscillations arouf(d;,t)=0 show theg-correlatorG(t) =c,g_(t/t,) of the hard-sphere system,
are due to restricting the infinite sum over angular-momentum inobtained from Eqgs(4), (5), and(6a).

dices in Egs.(19) to j<7 (upper paneland j<5 (lower pane),
respectively. -

PE(m)=1/2+ 2, (j+12FP(7);
estimation of a white-noise-background spectrum. This en- =1

hancement also is exhibited by the experimental data repro- o (200
duced in Fig. 1. H(n)= i+1/2h.P:(n).
Let us consider the probability densiB( 7,t)={(5(z(t) () 121 ( IhiPy()

— 7)) for the molecule’s axié(t) to have the projection
7(t) on its initial directione: 7(t)=e(t)e. Since 8(7(t)
—n)=12+37_,(j+1/2)P;(7)Pj(5(t)), one gets

Thus the distribution relaxes towards the distributi®fi{ »),
which is frozen fore=¢.. The relaxation does not exhibit
any correlation between changes in time describe&by),
and variations with angle described bi( 7). This is the
. _ scenario expected for relaxation due to dephasing in the ran-

P(n,t)=1/2+ 2’1 (J+ 1/2)P,—(77)C(J)(t). (198 dom distribution of sizes and shapes of the cages producing

= steric hindrance for the rotations. Fo#=0.80, theB regime
) ) ) ) extends fromt=10 to about 16 as shown in Fig. 4, and the
Thus, knowledge of the set a(1), J=12,...,isequiva-  ypper panel of Fig. 6 exhibits the described phenomena for
lent to knowingP(7,t). If the summation ovey is under-  {_1® andt=10* The B-relaxation window is somewhat
stood with the cutoff,, Eq. (198 describes the evolution gmgajier for¢=0.33, as will be discussed in quantitative de-

[’

of the distribution with the initial value tail below in connection with Fig. 7. The dephasing relax-
| ation for this case is demonstrated in Fig. 6 fer10? and
co 10°.
P(n,t=0)=1/2+ 1_21 (j+1/12Pi(n). (19b) The beginning of then-relaxation process follows von

Schweidler's law, Eq(16¢). It is identical with the end of
) . . the B process, and thus it is described within the scenario
Figure 6 exhibits results for the small distance parametepssed on Egs(20). The most drastic difference between
—€=(¢c— ¢)/¢.=0.001 corresponding to=3. The dotted  |5yge- and small-elongation relaxation shows up for the
lines exhibit P(#,t=0)/10, calculated withlc,=7 for {  process outside the von Schweidler regime. £10.80, the
=0.80, and ;,=5 for {=0.33, respectively. Within the dy- propapility decreases monotonically if the angde of the
namical window, where the leading-order result for #le  axis increases from its initial valu®@ =0 to ® = 7. This is
relaxation, Eq(15), applies, one gets shown in the upper panel of Fig. 6 foE5X10°. As time
increases, the probability fop~1 decreases, while it in-
P(7,t)=P%7)+H(n)G(t), (20a creases fom~ — 1. Thus, the relaxation towards the equilib-
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rium distribution P(#,t=%)=1/2 is similar to what one
would expect for diffusion on a sphere. Fgr=0.33, the

correlators for odg decay faster than the corresponding cor-

relators with the even index ¢ 1). This is demonstrated in
Fig. 4 and by the numbers, in Table Il. Therefore thex
process consists of an intermediate time step leading to
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The dotted linesc; and ¢, in the upper panels of Fig. 5
demonstrate this result.

For a strongly near-§=1) peaked probability distribu-
tion P(#,t), one can approximately replace averages of
functions of by the functions of the average;). Thus,
kebon et al. concludedf;=P;(f;) [28]. Specializing toe

probability distribution that is nearly symmetric with respect = ¢., one quantifies the sequencef@fin terms of its first

to the equatom=0. Only at later times, the symmetric dis-
tribution relaxes to the equilibrium distribution. Figure 6
shows that, already for the rather short titve10?, P(7,t)
exhibits a minimum. Fott=10°, there is an overshooting
effect of the probability fore(t)=—e: P(np=—1t=10%
>0.5; and this effect increases if the time increaseg to

=10°. Thus, the relaxation pattern is that expected for a

random process of large-angle flips of the molecule’s axis.

B. Dipole vs quadrupole relaxation for strong steric hindrance

The equations for the nonergodicity parame{dér@] im-
ply that thef; increase towards unity if the coupling coeffi-
cients in EqQ.(12) are increased towards infinity. For this
strong-coupling limit, one derives from Eq19a8 that
P(7,t)— 6(n—1). Because of continuity, for strong steric
hindrance and fot<t,_, P(#,t) is a narrowly peaked distri-
bution centered aroung~1. Thus, one expects the expan-
sion coefficientsf; for not too large values of to form a
smoothly decreasing sequencejof;>f,> .., f;~(f;_;

+fj.1)/2. Table | demonstrates this result quantitatively for

{=0.80 ande= ¢, :

f>f5>15>1;, large ¢. (219

In particular, the ratio {j/f5) of the relative strengths of the
a peaks for the dipole relaxatiof , and for the quadrupole
relaxation, f$, is larger than unity. One cannot conclude

quantitatively fromf$/f5 the ratioy (w2 .,)/ x5 (w?3,,) of the

valuef§:

(239

Substituting into Eq(16b) and specializing tar— 0+, one
can also quantify the sequencemgfby the first termh;:

f}::Pj(f(l:),

[,

hj=P/(f)hy, {—e. (230
From Table | one infers, that faf=0.80 the error of Eq.
(239 for j=2 (3,4) is as small as 0.1%3%,7%), and Eq.
(23b) is obeyed forj=2 (3,4) within 5% (22%,45%).

The strong nonlinear couplings of the structural-relaxation
modes require that all correlators enter the first relaxation
step, the second relaxation step, and the equilibrium state
nearly at the same respective time. This is demonstrated in
Fig. 3 for {=0.80. The most striking manifestation of the
coupling effect occurs at the center of tBerelaxation win-
dow for o—0—. In this case, the factorization theorem, Eq.
(15), is valid. All correlators cross their plateau at the same
time, sayr;, wherer, is the zero of thgs-correlatorG(t).
Because of the scaling law, E(p), one gets the resultg

=t t_, ie.

g

Ti;:,t\_to., o—0_. (24
Here,t, is the scale from Eq6a), andt_ is the zero of the

master function:g_(t_)=0. For the HSS it readd_
=0.704[17]. The open and full circles in Fig. 4 show that

a-peak heights, since the shapes of the spectra depend onthe asymptotic Eq(24) is obeyed very well forf=0.80.
However, Fig. 5 demonstrates that the two ratios are close t8ince thex processes ofM)(t) andC'?)(t) start at the same

each other. One can also characterizedhgeak height rela-
tive to the  microscopic-peak height, r;
= xD"(wh )XV (0!, or relative to the minimum inten-
sity, 1 =xV"(wha) X" (wly). From Fig. 5, one infers
ri/ro~4, andri/r;~3, i.e., the {=1) vs (j=2) enhance-
ment effect appears even more pronounced.

According to Eq.(16b), the nonergodicity parameters in-
crease with increasinge(— ¢;). On the other hand, &ff
>f;—f{. Thereforeh; must decrease iff increases, so that
the strongly coupled parametefsleave the asymptotic re-
gime for Eq.(16b) for similar magnitudes ofr. Table |
guantifies this result fof=0.80. In particular

h,;<h,, large ¢. (21b
The reasoning assumésto be large, and thus it cannot be
applied for too largg. There is someg,, so thath; decreases
with increasingj for j>j,. Within the frequency window,

time t_t, and reach zero nearly at the same time, one ex-
pects fromCM(t_t,)=fS>f5=C@)(t_t,) that the decay
time for CY) is larger than that fo€(®):

m>72 . large (. (25)
Furthermore, the€M)(t)/f$ vs Int plot is somewhat steeper
than the corresponding graph fpe2. This means that the
stretching is larger for thej&2) a process than for thej (
=1) « process. If one interpolates the decay functions by a
Kohlrausch law,CO)(t)/f{~exd —(t/7,)#], the stretching
exponent forj=1 is larger than that foj=2:

B1> B2,

Stretching can also be quantified by the widthat half-
height of thea peak of the susceptibility spectrum. For
=0.80 our model yields for j=1(2,3,4), w

large ¢. (26)

where the leading-order asymptotic law for the critical decay=1.16(1.25,1.37,1.50) decades. The Kohlrausch processes

is valid, Eq. (18), one derives an enhancement of the (
=2) spectrum relative to thej € 1) spectrum, since
X" (@)l xP"(w)=h,/hy,

h,<w<lhty. (22

leading to the samew require stretching exponentg
=0.99(0.90,0.82,0.74).

The derivation of the inequality for the time scales can be
put on a quantitative level by combining EQ.60 with the
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two inequalities in Egs(21). One gets in analogy to Eg. The evenj correlators show the conventional behavior.
(25): 7->72 . The a-relaxation law for theC()(t) holds in ~ Therefore, the discussion of their trends with decreaging

analogy to Eq.(7): C(j)(t):‘éj(“f). If the shape function for fixed j can be held analogously to that given in Sec. 111 B

~ ~ . . . for the trends with increasinpfor fixed large{. Thus one
c 1, 2
C;(t)/f} would be independent gf the ratior,/7, would nqerstands that the £2) « process for =0.33 is weaker,

be equal to the ratio},/72=[fSh,/h;f5]™. But the latter is  faster, and more stretched than that {e0.80, as it is dem-

about 2.1 times larger thar}/ 77 . onstrated in Figs. 4 and 5. The half-width of thepeak for
j=2(4) isw=1.66(1.86) decades as for a Kohlrausch pro-

C. Dipole vs quadrupole relaxation for weak steric hindrance ~ cess with exponeng=0.67(0.59). Notice in particular from

There are two universal phenomena that are relevant for g'g' 4, that thep-relaxation scalery fo[ the x=3 result is
discussion of the dynamics for weak steric hindrance. Th&lose to thef- andj-independent numbetr t, from Eq.(24).
first one concerns the limig=0 of the center-of-mass cor- Forx=2, the asymptotic formula is obeyed reasonably, but
relator®(j =0, u=0,q,t)=®$(t), which is identical to the the preasymptotic corrections are larger §e¥ 0.33 than for
tagged-particle-density correlator of the larger of the two¢=0.80. _ o
spheres forming the dumbbell. If the radius of this sphere, The most obvious precursor of the type-A transition is the
saydy, is of the same order or larger than the radiusf the ~ SUppression of the plateau valugdor oddj. This leads to a
solvent spheres, the steric hindrance is very effective. In thi¥iolation of the rule €, +f5)/2~f,, as is quantified in Table
case,d)fl(t) exhibits the canonical bifurcation scenariogif I. The general qu:_;thtatlvg reasoning fror_n Sec. Il B explains,
crossesp., as was discussed comprehensively in REg]. that the suppression df is connected with an e-nhance_ment
This implies that ford,=d the (j=0) correlators exhibit ©f N1: N1(£=0.33)hy({=0.80)~15. The amplituden, is

only a smoothy dependence faf decreasing to zero. A side given by the resolvent of the so-called stability matrix, and at

remark shall be added to this conclusion. If the ratio of the? tYPe-A transition the resolvent exhibits a pqte5,16.
ence hy({—Z(@))/hy({—{(¢))—=, and the regular

diametersd, /d of a sphere moving in a glass of hard spheresH \
decreases towards zero, there occurs a percolation transitidfgnd: Ed-(21b), is reversed:

at some critical valuedj/d). This is a type-A transition, i.e., h.>h small ¢ (27)
a bifurcation where the Lamb-Msbauer factor decreases e '

continuously to zero for d,—dj) approaching zero from For our example one infers from Table | thag/h,~4.2.
above[15,16. Because of continuity, it is obvious that for a According to Eq.(22), the critical spectrum for the dipole
dumbbell built of sufficiently small sphered;<dj, there relaxation is considerably larger than that for the quadrupole
will be a type-A transition if the elongatiogi decreases to relaxation, as is demonstrated by the dotted lines in the lower
some critical value* >0. If ¢ crosses{*, the dynamics two panels of Fig. 5.

changes from one dealing with molecules localized in the Combining Eq.(27) with von Schweidler’'s law, Eg.
hard-sphere glass to one dealing with delocalized moleculail6c), one concludes that th@*)(t) vs Int curve crosses its
motion. This smallé phenomenon for small molecules is not plateauf{ much steeper than ti@(?)(t) vs Int curve. This is
considered in this paper. illustrated in the lower panel of Fig. 4. Hence therelax-

The second universal phenomenon deals with a type-Ation of the {=1) response is faster than the one of the (
transition resulting from the fact, that for top-down sym- =2) response:

metrical molecules the MCT equations of motion of the

evenj correlators decouple from the ogldanes[10,26. The <72, small . (29
evenj correlators couple to the functioha(t), and thus the

conventional transition scenario of this correlator enforcesAgain the order for largé, Eq.(25), is reversed. From Table
the same for all other correlators with evietHowever, such 1I, one infers for x=3, 7./72=0.12. Accordingly, the
coupling does not exist for odd For large¢, this results in  a-peak positions for thex=3) spectra fofj=1 andj=2 in

no considerable effect. But all coupling coefficients in thethe lower panels of Fig. 5 differ by about one order of mag-
equations of motion approach zero for opdf ¢ tends to  nitude. For the ratio of the von Schweidler scales in Eq.
zero. Consequently, for afi> ¢ there is some critical elon- (16¢), one getsrt/72=[h,fS/h;f5]**—0 for {—¢,, and
gation c(¢) for a type-A transition. For the studied model thjs identifies the smallness of the ratity 72 as a precursor
{o(©)<Zo(¢c)=0.296[10,14). Choosing/ sufficiently close  of the type-A transition. The preceding discussion is valid
to Zc(¢), it can happen that for odd f;<f;.,, or evenf;  more generally and explains that all the oddorrelators
<fj+3 [10]. The transition af.(¢) shall not be studied in  gecay faster than the nearby evienes. As a result, the
this paper. For the demonstration of the sméfi-—{c(¢c))  probability distribution P(7,t) approaches first an even
phenomena, the valug=0.33 has been chosen so large thatfynction of 7, before the equilibrium value 0.5 is obtained,

the canonical sequence for the plateau values in¢f#eQ)  as is demonstrated in the lower panel of Fig. 6.
limit, Eq. (214, is not violated, as is quantified in Table I.

But it is chosen so small, that the precursor effects of the
type-A transition seriously influence the results for the
dumbbell dynamics. Thereby, the results are also representa- The factorization theorem for thg relaxation, Eq/(15),
tive for such cases, where the type-A transition singularity igneans that the rescaled correlatofd(t) = (CY(t) — f5)/h;
avoided[15] due to a weak breaking of the top-down sym- are given independently frofjnby the B-correlatorG(t) of
metry of the solvent-solute interaction. the solvent. The latter obeys the scaling law, specified by

D. B-relaxation scaling
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Egs.(4)—(6a). For fixed rescaled timfezt/tg, the cited for-

mulas deal with the results correctly up to ord@e| [16]. o 2o 2 T TV s Y
The leading corrections are of order|, and they explain the 0.8 _4 \NEOT \N\\;\fxfc 1
range of validity of the leading results for separatierf47]. 7 N
Figure 7 demonstrates these statements. On a 10% accuracy St’ 0.6 LT \ 1
level the leading-order results describ® (18%;45%;20%) Coal s [ L]
of the decay of the correlators around the plateau for ‘ j=1' | [

=0.80, j=1(/=0.80j=2;(=0.33j=1;(=0.33j=2). 02 | I .
These decay intervals are indicated in Fig. 4 by vertical lines. o \

For e=—0.001, the corresponding dynamical window ex- T
tends from about=10 to about 18, while it extends from
aboutt=3 to aboutt=100 for e= —0.01. This discussion
requires a reservation: The corrections to the scaling results
can lead to such a violation of E(R4), which appears as an
offset of the platealil7]. This offset can be noted in the
lower panel of Fig. 7 for the od@l+esults. The good descrip-
tion of the B8 decay of the {=0.33) results for odg holds

only after a correction of the offset. Fo=10%, the correc-

tion effects cause thel))(t) for /=0.80 to differ fromG(t);

one infers from Fig. 7 that thel)(t) increase with increas-
ing j. The general results for the theory of the corrections FIG. 8. Reorientational correlator€!(t) for j=1,2 and ¢
imply that then alsa)(t) increases with for t<10[17].  =0.80 and;=0.33 for various distance parameters — 10", pre-
The C(j)(t) vs Int curves do not intersect f&r_ta but they sen_ted as functions of logt/ 7). 'I'_hea-rel_axati_onjtime scale!, is
touch each other as is demonstrated in the upper panel gfflned byC(7l,)=f¢/2. The horizontal lines indicate the plateaus
Fig. 7. Corresponding results also hold o+ 0.33 after the i
mentioned offset is eliminated.

Equations(5) and (15) lead to the scaling law for the
susceptibility spectray"(w)/h;=c,x-(wt,). The master
spectray. (w)=wg" (w) are given by the Fourier-cosine
transformg’. () of the master functiong..(t). The master E. a-relaxation scaling
spectrum for the glass state describes the crossover from a Th . : . .

.~ x e a-relaxation scaling law reads for the reorientational
regular spectrum for small rescaled frequencies(w<1)  correlators in analogy to Eq7):
xw, to the critical spectrum at large rescaled frequencies, . o
X+ (@>1)xw?. It deals with the knee exhibited by the spec- chn)=Cj(t), t=tt,. (29
tra for e>0 andx=3,4 in Fig. 5. The master spectrum for -
the liquid describes the crossover from the von Schweidleffhe e-independent master functidd; obeys as initial con-
high-frequency tail of thex peak, x_(w<1)x1/w®, to the  dition the von Schweidler laV\C(J)(t):f}:_hjtb._*'_o(t%)-
critical decay for large rescaled frequencieg, (@>1) The sup’(’erposnlo_n” p~r|nC|pIe~for the susceptibility spectra
%o The results describe in the small-limit the readsy’’ (@)=x"" (w) with = wt, denoting the rescaled
p-relaxation minimum as it can be seen in Fig. 5 for the fréquency. Thee-independent master spectrum is given by
=3 andx=4 results. In particular, the factorization theoremih,e,, Fourier-cosine transform of the master correlators
explains why the spectral minima,,;, are located at the x! (0)=wCl)(»). Consequently, the above-defined
same position independently pfand /. The leading-order ~a-relaxation time scales), and susceptibility maximum po-
formulas imply @min=min/t,, Where @y, denotes the Sitions wy,, read
minimum of the master spectrug_ . For the hard-sphere
system, one gets,,i,=1.56[17].

Obviously, theg-relaxation scaling laws can describe the where Tl is defined byCO)(T)=%2 and @l denotes the
susceptibility minimum only for such small distance param- = ()7~ e .
eters, for whichw,, is located in that frequency window P&k frequency sz() (w). The scaling law implies that a
where the ¢=0) spectrum exhibits the asymptoii® law, representation o€ .' (t) as a function of the_ rescaled_ time
Eq. (18). Figure 5 shows that for the model under study thist/ 7, should superimpose correlators for different distance
window is restricted ta»<0.01. This means, that,,, hasto  parameters on the common curv€(t/t)). Asymptotic
be located about three decades below the peak of the micrealidity means that the Itf) interval, where the scaling
scopic susceptibility spectrum. Fap>0.01, the critical law is obeyed, expands to arbitrary size for-0. A corre-
spectrum is modified by crossover effects to the transiensponding statement holds for the representation of the sus-
dynamics. The susceptibility minimum with,,;;>0.01 is  ceptibility peaks as functions of the rescaled frequency. The
due to the crossover of the-peak tail to the microscopic corrections to the leading-order asymptotic laws are larger,
excitation spectrum; it cannot be discussed by the universahe larger the critical amplitude; is[17,1§. Figures 5 and 8

6 4 -2 0
10g 1, (t/7',) log ,,(t/T,)

asymptotic laws for the MCT bifurcation. One concludes
from Fig. 5, that|e| <10 2 needs to be satisfied in order to
apply theB-scaling laws for the model under study.

Tja=nt‘jt('f, a)inax= Z)j/t(’,, (30
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demonstrate that the described scenario for the evolution of ' ' ' ' ' '
the « process is valid fof=0.80, and also fot=0.33 in the
casej=2. For strong steric hindrance, the-scaling law
works for larger values ofg.— ¢), than theB-scaling law.
This is so, because the leading corrections todhscaling
law are of relative siz€&(|¢€|), while they are of relative size 04
O(\/|€]) for the B-scaling law[17].

Figure 8 demonstrates a drastje(1) vs (j =2) effect of
the « scaling for{=0.33. The dipole correlators do not ex-
hibit the superposition principle fdre|>10"4, nor do the
correlators for the other odd valuesjoforj=1 the plateau
emerges only for extremely small values of the distance pa-
rameter| €| <10~ 4. The a-peak heights of the dipole spectra 02
decrease with decreasifg in Fig. 5 in contradiction to the '
scaling-law prediction. This anomaly is caused by the large
size of the critical amplitudén;, which was explained in
connection with Eq(27). More precisely, it is caused by the 0.1

0.5

0.3

c

large percentage of the decay 6f*)(t) described by the P
B-scaling law as is indicated by the vertical lines in Fig. 4. log, Il

To formulate this observation quantitatively, let us remember . . .

that the decay of the correlator near the plateau is described 5 -4 -3

by Egs.(5), (6), and(15): CU)(t)=f%+h;\[alg_(t/t,). The log ,, (t/t ")

master functiory_(t) for small positive values and all nega-
tive ones is well approximated hy(t) = —Bt°+ B, /(Bt?).
Here,B, is determined by the exponent parameteand for
our solvent model read8;=0.431[17]. Thus one gets for
CU(t)=f¢ within the window for the validity of the
B-relaxation scaling law:

FIG. 9. Dipole correlatolC®)(t) of the dumbbell with small
elongation{=0.33 and distance parametesrss —10 * for x=2
—5 as functions of the logarithm of the rescaled tﬁnet/t[, (light
full lines). Heret is the second critical time scale, E@b). The
heavy full line is thea-relaxation master functio€*)(t). The
dotted lines show the leading-orderscaling result plus the leading

i correction term according to Ed31b). The inset exhibits in a
C(J)(t) - fic_ \/th{B(t/t,,)b— B1/[B(t/t,) b]}' double-logarithmic plot;, (full square$ and thead hocscaling time

(313 % (open squarésfor x=1—5. The full straight line with slope

The leadi fi to this f | lain th =2.46 exhibits the power-law formula for the hard-sphere system,
€ leading corrections fo this formuia can explain the pOSEq. (6b). The dashed line interpolates the open squaresxfor

sible offset off} or, equivalently, of the scaldg [17], which 1 5 3 yiith an effective power-law exponept=1.65, while the
was noticed above in connection with Fig. 7 f0=0.33.  gotted line is the asymptotic smadlresult for % .
Equation (318 can be rewritten asC'(t)=[f{—h;t"]

+hj|o|B,/t°. Here, the bracket is the-scaling-law de-  size of the corrections only. In the case of the small elonga-
scription of the initial part of thex process, and the term tjon the distance paramets| has to be taken almost two
proportional toB, is the leading correction. The correction g,qers of magnitude smaller fgr=1 in order to render the
term to thea-scaling law deals with that part of the pro- ¢ rrections to ther scaling as small as found fge=2. For
cess below thg plateau, which is not given by the von SCh[e|210*3, even including the leading corrections to von
weidler's larget asymptote. Therefore, one can write that for schweidler's law, one can explain the relaxation from the
the a process for not too large values of rescaled time plateau only up to some offset in the time scale. This is
demonstrated in Fig. 9 by the dotted lines for 2,3.
CO(t)=CO(t)+h;|o|B, /T°. (31b Two remarks concerning tests of the second scaling law
shall be added. The definition of the time scajeused in
The analog of this formula was shown in ReL7] to de-  Fig. 8 was arbitrary. Let us consider more general definitions
scribe the evolution of ther process of the density correla- tg pe parametrized by a number 1 and denoted as,. The
tors of the HSS perfectly foie[ <0.1. It was also shown that  ¢pscriptsy andj shall be dropped for the sake of simplicity,
the corresponding spectrum describes the susceptibility peaa{hd the definition shall b€ ()= ff/k. If the scaling law

to increase above the scaling-law constghfw,y if the is valid, one finds in analogy to E¢0) TkZTkté- Hereffk

separatior €| increases from 107 to 10 1. _ _ (1) 2 . _ _ _
In Fig. 9, the evolution of thej= 1) a process for small 1S defined byC¥(t) =fj/k. In this case, the choice &is

steric hindrance is reexamined. Instead of rescaling the timérelevant, since the ratio of two different scaleseisnde-

with thead hocscaler, , the theoretically motivated scalp ~ pendent,r /7y =ty /ty,. However, if preasymptotic cor-

is chosen. One recognizes, that the found scenario does n@ctions are present, the scales are not equivalent. The range
exhibit any qualitative peculiarity anymore, compared toof validity of the superposition principle expands from large
what is presented in Fig. 8 faf=0.33 andj=2. The ( to small rescaled times. This follows from E@1b and is

=1) vs (j=2) anomaly is identified as an anomaly of the demonstrated in Fig. 9. One gets for<k,,
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(32) between dielectric-loss and depolarized-light-scattering spec-
tra, which were discussed in Sec. | in connection with Fig. 1.

For a detection of the superposition principle for an as large?€cause of Eq(la, the relaxation of the correlatap fol-
as possible value dfe|, one should therefore choose an aslows that of the kernem. .Therefore,. thm-relaaxayon time
large as possible value df for the rescaling procedure. Scale of the §—0) density fluctuations, say,, is larger
Thereby, the artificial crossing point of the rescaled curves ahan the corresponding scale of the longitudinal elastic
t=r, is suppressed as much as possible. Otherwise, one imodulusm,_o(z), say 7y, . For strong steric hindrance, the
troduces a time scale, for the characterization of a decay decay of the cage is the prerequisite for the reorientation of
process that cannot be characterized by a single scale. Thige molecule, and therefore’< 2. Thus one expects the
outcome of this ill-defined procedure is demonstrated in théourth general feature of the relaxation listed in the Intro-
lower left panel in Fig. 8. In this case, =17y, is a param-  duction: 72/7™>1. For our model one gets far=—0.01,
eter extracted from the correlator which, according to Fig. 7,,m— 130, 72=240, 72=920. The ratior2/7T~7 is of the
is adequately specified by the two scatesandt, of the nge order as cited in Sec. | for PC and Salol.
B-relaxation scaling law. The dashed line in the inset of Fig. The mode-coupling coefficients in E¢L2) decrease to
9 demonstrates explicitly that the scaig does not exhibit  zero ifj tends to infinity. Thus the solutions for largere
the asymptotic behavior fdie|=10"3. The asymptotic law sums of many small terms, which are not strongly correlated.
7L=T,t! is followed only fore<10"*. Each term exhibits the short-time von Schweidler law behav-
The second remark concerns the determination of the ever for the a relaxationCU(t) —ffoc(t/t))®. Therefore, one
ponent y entering the power-law behavior for the expects forCU)(t) the characteristic function of the stable
a-relaxation time scale, as specified by E@b) and (30). Lévy distribution ex@(—tl“j)b] [3]. For the density correla-
These results are based on the validity of the scaling lawors of the solvent, Fuchs has worked out the limit behavior
[16]. Therefore, one cannot appeal to MCT if one fits powerfor the a-relaxation master function fay— and showed
laws for scaling times for cases where the scaling law ishow the Kohlrausch law wittB=b arises[30]. We suspect
violated. The dashed line in the inset in Fig. 9 demonstratethat a similar derivation can be done for the reorientational
that the scale™, for | e|=10"2 can be fitted well by a power correlators. Therefore, we conjecture that the sequence of
law for a two-decade variation of the distance paramieter ~Kohlrausch exponent8;> B,> B3> - - - converges towards
The identified effective exponent' <y describes the varia- the von Schweidler exponenb. Molecular-dynamics-
tion of 7. over three orders of magnitude; but neverthelessimulation data for a model of water have been interpreted
¥' has no well-defined meaning for the discussion of ourconsistently within the standard MCT scenai81-33. In
model. particular, CU)(t) exhibits conventional behavigB4]. One
concludes that water exhibits strong-steric-hindrance effects.
Therefore it is reassuring that the sequence of the first five
Kohlrausch exponent@; decreases with increasirjgmo-
Solving the MCT equations of motion for the dynamics of notonously towards the von Schweidler expongsf]. A
a hard-sphere dumbbell moving in a hard-sphere liquid, firstfurther general result, namely, the increase in the initial part
principle results have been obtained for the evolution of theof the series of critical amplitudes, EQ1b), is also found in
glassy dynamics of the reorientational degrees of freedom dhe simulation data foj=<3 [35].
a molecule. It was found that one has to distinguish between Figure 1 exhibits as full lines thg € 1) and (=2) spec-
two scenarios, namely, between strong steric hindrance dga calculated forf=0.80. The lines fox=1 andx=2 are
found for large elongationg of the dumbbell, and weak the ones discussed in Fig. 5, and the other two refex to
steric hindrance as found for small elongations. =1.33 andx=1.67, respectively. In order to transfer the
For strong steric hindrance, the mode-coupling coeffi-MCT results, which are calculated withd hocunits speci-
cients for the reorientational degrees of freedom in #8)  fied in Sec. Il, to the units used by the experimentalists, one
are of the same order as the ones entering (Bgfor the  has to introduce three scales. The first and second scale
description of the translational degrees of freedom of thdransfer the calculated dimensionless normalized spectra
solvent. The dependence of the various parameters on thei)"(,) for j=1 andj=2 to the units used by the experi-
angular-momentum indeis sir-nilgr.to the dependence on mentalists for their dielectric-loss and depolarized-light-
the wave vector. One has to viey(j +1) as the analog of  scattering spectra, respectively. The third scale shifts our fre-
q°. While theq dependence reflects the decomposition of theyuency scale to the GHz scale. In the double-logarithmic
direct solute-solvent correlations in plane waves, theepresentation, the first two scales define an overall vertical
j-dependence reflects the decomposition in spherical hakhitt of the diagrams in Fig. 5, while the third scale defines a
monics. Hence one finds that all reported results onjthe horizontal shift of the figures. Intending to compare data for
dependence of the reorientational correlat@d)(t) are  pC for different temperatures with the MCT results for dif-
similar—and can be explained in a similar manner—aserent packing fractiong, one gets a mapping of tHescale
known from the previous work on the tagged-particle-densityonto thee scale via Eq(9). The result is shown as an inset
correlators®g(t) in simple liquids[18,29. In particular, it in Fig. 1. The inset also includes the point with coordinates
was shown that with increasirjghe a-peak-strength param- of the critical packing fraction of the solvent. and the
etersf{, Eq.(21a), the a-relaxation-time scales),, Eq.(25), critical temperaturd .= 180 K. This value foiT, was deter-
and the stretching exponengs, Eg. (26), decrease. These mined for PC by analyzing neutron scattering da&@], and
findings reproduce qualitatively the three general differencetas recently been corroborated in an MCT analysis of vari-

Tklltk1< Tk2/tk2<t;.

IV. CONCLUSIONS
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0 . . . . - wherebj(z) are the spherical Bessel functions. The full lines
in Fig. 10 exhibit the spectra fdF,(t) for q=7.4. Thea
peaks have a half-width aff=1.61 decades as produced by

a Kohlrausch law with stretching expongi= 0.69. The fre-
quency was rescaled as explained in connection with Fig. 1
and the scale for the spectra was adjusted to meet the one of
the data. Comparison of the full line with the dashed one for
x=2 shows the features distinguishing theprocesses of

Fo(w) from that of@f‘"(w). The result calculated fax=1
shows that the finding for our model semiquantitatively ac-
counts for thea-peak data.
) s s s s s Some side remarks considering the comparisons in Figs. 1
2 -1 0 1 2 3 4 and 10 might be useful. A schematic-model analysis of the
log ,, (w/27) [GHz] PC data gave the exponent paramater0.75[37], in good
agreement with the values found from analyses of the sus-
_ . ceptibility minima with the B-relaxation scaling laws
coherent neutron scatterirg8] for g=1.3 A" and T=285 K 19,20,38. The value is close to the reswt=0.74 for the

(cwclt_as). The solid lines exhibit the neutron _scatterlng response o ard-sphere system, E(). This accident ensures that the
the discussed MCT model, and the dashed lines are the mere center- . - .

L ) . . master function for the susceptibility minimum and the val-
of-mass contributions for packing fractions corresponding+dl

and 2. The computational wave vectowis 7.4. As done in Fig. 1, ues of all anomalo'us' equnents of PC agre'e within t.h.e ex:
a rescaling of the theoretical frequencies by a factor of 10 wad€rimental uncertainties with the corresponding quantities of

chosen to match the scale of the experiment. The normalized the(ghe model st.udied _in this paper; {md thisis a pre.requ.isite ofa
retical spectra have been rescaled by a factor of 1.1. successful fit. Accidently, the ratio of therelaxation times

71172 noted in Table Il fort=0.8 is only a bit larger than

ous other PC experimenit37]. Our results in Fig. 1 describe the ratio of the a-peak-maximum positions of PC,
the evolution of the two types of PC spectra semiquantitaw,znajwlmax, exhibited in Fig. 1; and this is another request
tively. In particular, the extrapolation of th&-¢ relation  for a reasonable fit. Since the ratio decreases with decreasing
yields a reasonable estimation of the critical temperature fof, some{<0.80 could be chosen to reproduce the specified
that system, which is demonstrated through the dashed ling =1) vs (j =2) effect quantitatively. Nevertheless, it is re-
in the inset. There is no obvious reason why the studiednarkable that the fit in Fig. 1 reproduces the ratioggfeak
dilute solution of hard symmetric dumbbells in a hard-spheranaximum intensity to  B-minimum intensity
solvent should produce spectra, which are similar to the dat?‘(j)”(wmax)/X(j)”(wmm) reasonably well for both values pf

for PC. We consider the found similarities to a large extentNeither is it trivial that the model reproduces reasonably the
as accidental. The theoretical curves are added in Fig. 1 Witt]j =1) vs (j=2) effect for stretching.

the mere intention to justlfy the conclusion: the model stud- A new |iquid_g|ass_transition Scenario is predicted Wh|Ch
ied in this paper and our choice of parameters are relevané referred to as the regime of weak steric hindrance for
for achieving an understanding of experiments in glassreorientational motion. It is characterized by=1) vs (j
forming molecular liquids. ) ~ =2) effects, more generally by oddvs evenj effects,

In order to further corroborate the preceding conclusionyhich are qualitatively different from the results described
let us consider Fig. 10. The data points exhibit a susceptibilapove as strong-steric-hindrance results. The new scenario
ity spectrum of PC measured by incoherent-neutrongeeyrs if precursor phenomena of a type-A-transition be-
scattering spectroscopy for the wave vectpr1.3 A™'  yeen two nonergodic states strongly influence the
[38]. A remarkable feature of the-peak spectrum compared asymptotic results for the conventional MCT bifurcation.
to the spectra shown in Fig. 1 is that it is less pronouncedrhe scenario appears if the particle interactions deviate not
relative to the spectrum of the microscopic excitation bandgg strongly from spherical symmetry, e.g., if a linear mol-
and that it is more stretched. The two dashed lines in Fig. 1@cyle exhibits only small deviations from a top-down sym-
exhibit the spectra for the center-of-mass correlabg(t)  metry and if there are not too large elongations. Six features
=®(q,j=0,.=0;) for q=7.4 in order to emphasize that characterize the weak-steric-hindrance scenario. firsthe
this leading approximation for the scattering function cannoplateausf; for the reorientational correlators for oddare
easily explain the experimental findings. The shawpeaks  suppressed in comparison to what one would expect by in-
of &g have a half-width ofv=1.34 decades as produced by terpolating or extrapolating the values for nearby ejqta-

a Kohlrausch process with exponesi=0.84. The scattering teaus(Table ). Most importantly(ii), the critical amplitude
function F(t) is a sum over the contributions of the mol- h, is larger tharh,, Eq. (27), so that the canonical ordering
ecule’s constituents and hence it is a superposition of thef the h; for smallj, Eq. (21b), is reversed. Thirdiii), the
density correlators for all angular-momentum indige§or  percentage of the decay of the reorientational correlators
the symmetric dumbbell one gets up to some normalizatiort()(t), which can be explained by the leading- plus next-to-
constan{10] leading-order asymptotic formulas for the relaxation is
larger forj=1 than forj=2; as is indicated by the vertical
_ ; _ 2 ; lines in Fig. 4. The structural relaxation of the reorientations
FalV) EJ: (2i+1) bi(qel2)°(q,j,00), (33 is dominated by large-angle flipév), as shown in Fig. 6

FIG. 10. Susceptibility spectrung” of PC as measured by in-
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for the dumbbell with elongation {=0.33. The
a-relaxation-time scale for=1 is smaller than foj=2, Eq.
(28), (v) so that the canonical order of the-relaxation
scales, Eq(25), is reversed. This can cause B)(t) vs Int
graphs forj =1 to cross the graphs fgr=2, as is shown for
the {=0.33 results in Figs. 3 and 4. Finallyi), for distance
parameters e|=10"3, where the conventionaCl)(t) vs

more, thea-peak variation withx shown in the lower left
panel of Fig. 5 is in qualitative agreement with that reported
in Ref.[39]. In view of these observations it does not seem
impossible that the scenario studied in RE&—41 fits into
the framework of the ideal MCT. However, it is not clear
whether or not the results of Ref@9-41 can be explained
! by our theory for type-A precursors of a dilute solution of
Int/(7,) plot exhibits thea-relaxation scaling law fof=2 molecules. First, the simulation results for the dumbbell lig-
the correlators fojj =1 do not show the validity of the su- uid do not exhibit a particular decreasef§frelative tof$.
IOGFIOOSIUOn principle, as is demonstrated in Fig. 8. Nor doeSecond, the3-relaxation scaling has not been documented
the scaler,,, defined as the time for a 50% decay of thefor the dumbbell liquid and so it is unclear whether or not the
a-relaxation correlator, exhibit the power-law behavior with feature(iii) holds for that case.
the correct exponeny as is shown in the inset of Fig. 9. Summarizing, it shall be emphasized that all qualitative
A side remark concerning a molecular-dynamics study ofeatures for the evolution of the structural relaxation studied
the evolution of glassy dynamics in a Lennard-Jones dumbin this paper have been explained by means of the formulas
bell liquid by Kammereret al.[39—-41] might be in order. It for the leading-asymptotic expansions and their leading-
was reported that the correlators dealing with translationabrder-correction formulas for the bifurcation scenario. In this
degrees of freedom and also for the ones for the reorientaense, these asymptotic formulas can be considered as the
tional dynamics for angular indej¢* 1 could be interpreted essence of MCT. However, in order to explain the character-
qualitatively within the universal asymptotic MCT formulas. istic (j=1) vs (j =2) differences for the relaxation patterns,
However, the evolution of the dipole correlators did not fitit is necessary to also understand the general trends of the
into the standard MCT pattern. It was found that-h, and  nonuniversal parameters with variations of wave-veaor
Ti< ri. A drastic violation of thex-scaling law was noted and angular-momentum indg¢xAnd this requires the use of
quite similar to what is exhibited in the lower left panel of MCT as a microscopic theory based on the knowledge of the
Fig. 8. The scaler. exhibited a deviation from the equilibrium structure.
asymptotic lawe™?, but a fit by r,>xe~?" with ' as dis-
cussed in the inset of Fig. 9 was possible. These simulation
results forj =1 differ from those for water simulatiod82— ACKNOWLEDGMENTS
35] as well as from the experimental findings for propylene We thank the authors of Refkl9,20,3§ for the permis-
carbonate quoted in Fig. 1. However, they agree with thesion to use their data files and M. Fuchs for many stimulating
features(ii), (v), and (vi) specified in the preceding para- discussions. We kindly thank F. Sciortino for permission to
graph. Moreover, the propertfiv) concerning the large- cite his unpublished simulation results for the reorientational
angle flips is also obtained in Rf39]. Accidently, thex dynamics of water. We gratefully acknowledge helpful cri-
=2 results in the lower panel of Fig. 5 show that the mini-tique and suggestions for improvements of the manuscript
mum position of thej=1 spectrum exceeds that of the written to us by H.Z. Cummins, R. Pick, and R. Schilling.
=2 spectrum by nearly one order of magnitude, in agreeThis work was supported by Verbundprojekt BMBF 03-
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